
PROGETTO E VERIFICA DI GENERATORI D'ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA FISSE E CON FREQUENZA ED AMPIEZZA REGOLABILI

PROGETTO E VERIFICA DI UN GENERATORE D'ONDA TRIANGOLARE E QUADRA A FREQUENZA ED AMPIEZZA FISSA

Schema del circuito

Richiami teorici

Il circuito è costituito da un comparatore con isteresi non invertente con tensione di riferimento lo zero volt di massa e tensione d'ingresso la tensione triangolare in uscita dall'integratore invertente, che ha come tensione d'ingresso la tensione in uscita dal comparatore.

Il periodo dell'onda triangolare (e quadra) è:
$$T = \frac{4RCR_2}{R_1} \implies f = \frac{R_2}{R_1} \cdot \frac{1}{4RC}$$
 e la sua ampiezza è: $V_{oTRM} = \frac{R_1}{R_2} V_{oQUH}$.

L'ampiezza dell'onda quadra è la tensione di saturazione dell'amplificatore operazionale.

Progetto del circuito

Si fissa:
$$V_{CC} = \pm 12V$$
; $f = 2kHz \rightarrow T = 0.5ms$; $V_{oOUH} = -V_{oOUL} = 11V$; $V_{oTRH} = -V_{oTRL} = 5V$.

Si utilizza l'amplificatore operazionale TL082, un doppio operazionale con ingressi JFET.

Definizione di R_1 e R_2

Dalla relazione dell'ampiezza si ha:
$$V_{\text{oTRM}} = \frac{R_1}{R_2} V_{\text{oQUH}} \implies \frac{R_1}{R_2} = \frac{V_{\text{oQUH}}}{V_{\text{oTRM}}} = \frac{11}{5} = 2,2 \implies$$

$$\Rightarrow$$
 R₂ = 2,2R₁, di fissa R₁ = 10k Ω e si calcola R₂ = 2,2R₁ = 22k Ω .

Definizione di R e C

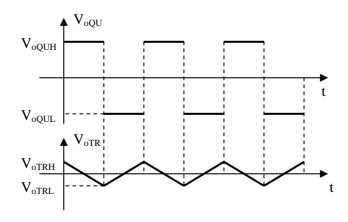
Dalla relazione della frequenza si ha: $f = \frac{R_2}{R_1} \cdot \frac{1}{4RC} \implies RC = \frac{R_2}{R_1} \cdot \frac{1}{4f} = 2, 2 \cdot \frac{1}{4 \cdot 2 \cdot 10^3} = 0,275 \text{ms}$

Si fissa $\,C=1\eta F\,e\,$ si calcola $\,R=\frac{0.275\cdot 10^{-3}}{C}=\frac{0.275\cdot 10^{-3}}{1\cdot 10^{-9}}=275k\Omega\,,\,$ valore commerciale $270k\Omega.$

 $\mbox{\bf Riassumendo:} \quad R_1 = 10 k \Omega \ \ \, ; \ \, R_2 = 22 k \Omega \ \ \, ; \ \, R = 270 k \Omega \ \ \, ; \ \, C = 1 \eta F \; . \label{eq:resolvent}$

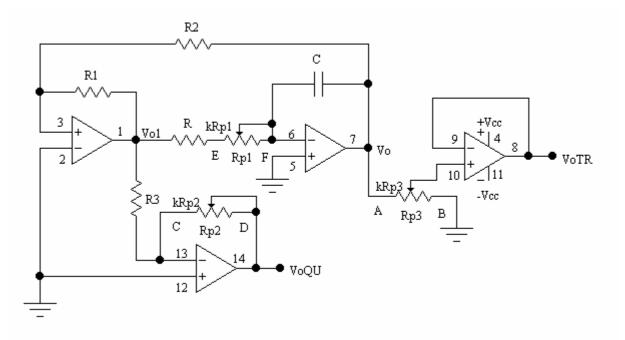
Con tali valori, si ha:

$$f = \frac{R_2}{R_1} \cdot \frac{1}{4RC} = \frac{22 \cdot 10^3}{10 \cdot 10^3} \cdot \frac{1}{4 \cdot 270 \cdot 10^3 \cdot 1 \cdot 10^{-9}} = 2,04 \text{kHz} \quad ; \quad V_{\text{oTRM}} = \frac{R_1}{R_2} V_{\text{oQUH}} = \frac{10 \cdot 10^3}{22 \cdot 10^3} \cdot 11 = 5 V_{\text{oTRM}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = 5 V_{\text{oQUH}} = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot 11 = \frac{10 \cdot 10^3}{10 \cdot 10^3} \cdot$$


Procedimento di verifica

- 1. Si monta il circuito e si collega l'alimentazione. Si collega il canale CH1 dell'oscilloscopio all'uscita V_{oQU} (pin 1) e il canale CH2 all'uscita V_{oTR} (pin 7).
- 2. Del segnale ad onda quadra si misurano: V_{oQUH} , V_{oQUL} , T , e si calcola la frequenza come $f = \frac{1}{t}.$
- 3. Del segnale triangolare si misurano V_{oTRH} e V_{oTRL}.
- 4. Si riportano i grafici correlati dei due segnali.

Dati misurati e grafici


- Onda quadra:
$$V_{oQUH} = -V_{oQUL} = 10.5V$$
; $T = 0.477 \text{ms} \rightarrow f = \frac{1}{T} = \frac{1}{0.477 \cdot 10^{-3}} = 2.1 \text{kHz}$.

- Onda triangolare: $V_{oTRH} = -V_{oTRL} = 5V$.

PROGETTO E VERIFICA DI UN GENERATORE D'ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA REGOLABILI

Schema del circuito

Sigle e valori dei componenti

$$\begin{split} \text{I.C.} &= TL084 \ ; \ \ C = 10 \eta F \ ; \ \ R_{P1} = 47 k\Omega \ ; \ \ R_{P2} = 1 M\Omega \ ; \ \ R_{P1} = 1 M\Omega \ ; \ \ R = 5,6 k\Omega \ ; \ \ R_1 = 180 k\Omega \ ; \\ R_2 &= 150 k\Omega \ ; \ \ R_3 = \ 1 M\Omega. \end{split}$$

Strumenti e apparecchiature

Alimentatore duale ±12V; oscilloscopio doppia traccia; basetta di bread-board.

Richiami teorici

La variazione della frequenza si ottiene inserendo un potenziometro in serie alla resistenza R. la frequenza risulta data da:

$$T = \frac{4(R + kR_{PI})CR_2}{R_1} \quad \Rightarrow \quad f = \frac{R_1}{R_2} \cdot \frac{1}{4(R + kR_{PI})C} \quad \text{con } 0 \le k \le 1$$

Al variare di k tra 0 ed 1, varia la frequenza tra i valori:

$$- k = 1 \text{ (cursore in F)} \implies kR_{P1} = R_{P1} \implies f_{MIN} = \frac{R_1}{R_2} \cdot \frac{1}{4(R + R_{P1})C} \implies T_{MAX} = \frac{4(R + R_{P1})CR_2}{R_1}$$

$$- k = 0 \text{ (cursore in E)} \implies kR_{P1} = 0 \implies f_{MAX} = \frac{R_1}{R_2} \cdot \frac{1}{4RC} \implies T_{MIN} = \frac{4RCR_2}{R_1}$$

La variazione dell'ampiezza dell'onda quadra si ottiene utilizzando sull'uscita V_{o1} un amplificatore invertente con guadagno regolabile tra zero ed uno mediante un potenziometro R_{P2} inserito come resistenza di retroazione, mentre la resistenza d'ingresso è una resistenza $R_3 = R_{P2}$. Con $0 \le k \le 1$, l'amplificazione e l'ampiezza d'uscita sono:

$$A = -\frac{kR_{_{P2}}}{R_{_{3}}} \left\langle\begin{matrix} k=0 & \text{cursore} & \text{in} & C & \Rightarrow & kR_{_{P2}}=0 & \Rightarrow & A=0 & \Rightarrow & V_{_{oQU}}=0 \\ \\ k=1 & \text{cursore} & \text{in} & D & \Rightarrow & kR_{_{P2}}=R_{_{P2}}=R_{_{3}} & \Rightarrow & A=1 & \Rightarrow & V_{_{oQU}}=V_{_{ol}} \\ \end{matrix}\right.$$

La variazione dell'ampiezza dell'onda triangolare si ottiene inserendo sull'uscita V_o un potenziometro R_{P3} dal cui cursore, mediante un inseguitore, si preleva una frazione della tensione V_o proporzionale a k (frazione di R_{P3} inserita):

$$V_{oTR} = \frac{kR_{P3}}{R_3} V_o = \frac{kR_{P3}}{R_{P3}} V_o = kV_o \begin{cases} k = 0 & \text{cursore} & \text{in} \quad B \implies V_{oTR} = 0 \\ k = 1 & \text{cursore} & \text{in} \quad A \implies V_{oTR} = V_o \end{cases}$$

I campi di variazione delle ampiezze sono: $0 \le V_{oQU} \le V_{o1}$; $0 \le V_{oTR} \le V_{o}$.

Definizione del circuito e calcolo dei componenti

Dati di progetto:
$$V_{CC} = \pm 12V$$
 ; $V_{o1H} = -V_{o1L} = 11V$; $V_{oH} = -V_{oL} = 10V$.
$$f = 0.5kHz \div 5kHz \implies T = 0.2ms \div 2ms$$

 $V_{\text{o}1H}\,$ e $\,V_{\text{o}H}\,$ sono il massimo valore delle ampiezze, rispettivamente, dell'onda quadra e dell'onda triangolare.

 $\underline{\text{Definizione del rapporto}} \, \underline{\frac{R_2}{R_1}} \, \underline{\text{e dei valori di } R_1 \, \text{e } R_2}$

$$\frac{R_2}{R_1} = -\frac{V_{oH}}{V_{oIL}} = \frac{V_{oH}}{V_{oIH}} = \frac{10}{11} = 0.91$$
 \Rightarrow $R_2 = 0.91R_1$

Si fissa $R_1=180k\Omega$ e si calcola $R_2=0.91R_1=0.91\cdot180\cdot10^3=163.8k\Omega$, valore commerciale $150k\Omega$.

Definizione di C, R e R_{P1}

$$-$$
 f_{MIN} = 0,5kHz \rightarrow T_{MAX} = 2ms con R_{P1} tutto inserito (cursore in F)

-
$$f_{MAX} = 5kHz$$
 \rightarrow $T_{MIN} = 0.2ms$ con R_{P1} tutto cortocircuitato (cursore in E)

$$T_{\text{MAX}} = 4(R + R_{\text{Pl}})C \cdot \frac{R_2}{R_1} \quad \Rightarrow \quad R_{\text{Pl}} = \frac{T_{\text{MAX}}}{4 \cdot \frac{R_2}{R_1} \cdot C} - R \quad ; \quad T_{\text{MIN}} = 4RC \cdot \frac{R_2}{R_1} \quad \Rightarrow \quad RC = \frac{T_{\text{MAX}}}{4 \cdot \frac{R_2}{R_1}}$$

Da T_{MIN} si calcola il valore del prodotto RC:
$$RC = \frac{T_{MAX}}{4 \cdot \frac{R_2}{R}} = \frac{0.2 \cdot 10^{-3}}{4 \cdot \frac{150 \cdot 10^3}{180 \cdot 10^3}} = 60 \mu s$$

Si fissa $C=10\eta F$ e si calcola $R=\frac{60\cdot 10^{-6}}{C}=\frac{60\cdot 10^{-6}}{10\cdot 10^{-9}}=6k\Omega$, valore commerciale 5,6k Ω .

Da T_{MIN} si calcola R_{P1}:
$$R_{P1} = \frac{T_{MAX}}{4 \cdot \frac{R_2}{R_1} \cdot C} - R = \frac{2 \cdot 10^{-3}}{4 \cdot \frac{150 \cdot 10^3}{180 \cdot 10^3} \cdot 10 \cdot 10^{-9}} - 5,6 \cdot 10^3 = 54,4k\Omega$$

valore commerciale $56k\Omega$.

Con tali valori si ha:

$$\begin{split} T_{\text{MAX}} &= 4(R + R_{\text{Pl}})C \cdot \frac{R_2}{R_1} = 4 \Big(5,6 \cdot 10^3 + 4,7 \cdot 10^3 \Big) \cdot 10 \cdot 10^{-9} \cdot \frac{150 \cdot 10^3}{180 \cdot 10^3} = 1,753 \text{ms} \\ \\ T_{\text{MIN}} &= 4RC \cdot \frac{R_2}{R_1} = 4 \cdot 5,6 \cdot 10^3 \cdot 10 \cdot 10^{-9} \cdot \frac{150 \cdot 10^3}{180 \cdot 10^3} = 0,187 \text{ms} \\ \\ f_{\text{MIN}} &= \frac{1}{T_{\text{MAX}}} = \frac{1}{1,753 \cdot 10^{-3}} = 0,57 \text{kHz} \qquad ; \qquad f_{\text{MAX}} = \frac{1}{T_{\text{MIN}}} = \frac{1}{0,187 \cdot 10^{-3}} = 5,347 \text{kHz} \end{split}$$

Le variazioni della frequenza e del periodo saranno:

$$f = 0.57 \text{kHz} \div 5.347 \text{kHz}$$
 e $T = 0.187 \text{ms} \div 1.753 \text{ms}$

Variazione dell'ampiezza dell'onda triangolare

Si utilizza un inseguitore il cui segnale d'ingresso viene preso da un potenziometro $R_{P3}=1M\Omega$. variando la posizione del cursore, l'ampiezza d'uscita varierà tra zero e l'ampiezza massima V_{oH} .

Variazione dell'ampiezza dell'onda quadra

Si utilizza un amplificatore operazionale in configurazione invertente e amplificazione variabile tra 0 e 1. si utilizza come resistenza di retroazione un potenziometro $R_{p2} = 1M\Omega$ e una resistenza $R_3 = 1M\Omega$, valore che non influenzerà in alcun modo il circuito generatore d'onda quadra e triangolare.

L'amplificazione è $A = -\frac{kR_{P2}}{R_3}$. Al variare di k tra 0 e 1, varia R_{P2} e l'amplificazione A varierà tra

-1 e 0, consentendo così la regolazione dell'ampiezza e l'inversione di fase dell'onda quadra.

Se non si è interessati all'inversione dell'onda quadra (ossia non importa se i due segnali, triangolare e quadro, sono in di segno opposto), il controllo dell'ampiezza può essere effettuato utilizzando lo stesso sistema usato per l'onda triangolare.

Procedimento della verifica

Punto a

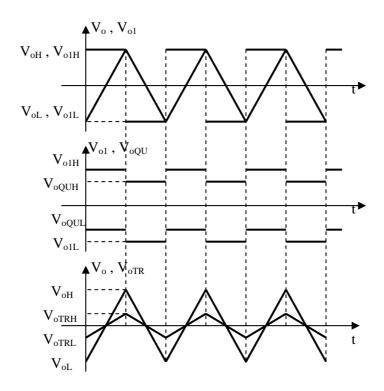
- 1. Si monta e si alimenta il circuito.
- 2. Si collega all'uscita V_{o1} il canale CH1 dell'oscilloscopio e all'uscita V_o il canale CH2.
- 3. Dei segnali visualizzati, quadro e triangolare, si verifica che se $V_{o1} = V_{o1H}$ si ha una rampa in discesa; se $V_{o1} = V_{o1L}$ si ha una rampa in salita. Si misurano le ampiezze e il periodo.
- 4. Usando il valore del periodo misurato si calcola la frequenza come $f = \frac{1}{T}$.

Punto b

- 5. Si varia R_{P1} in modo da disinserirlo (cursore in E, massima frequenza) e si misura ampiezza e periodo T_{MIN} .
- 6. Usando il valore del periodo T_{MIN} misurato si calcola la frequenza massima come $f_{MAX} = \frac{1}{T_{MN}}$.
- 7. Si varia R_{P1} in modo inverso fino a inserirlo tutto (cursore in F, minima frequenza) e si misura ampiezza e periodo T_{MAX} .
- 8. Usando il valore del periodo T_{MAX} misurato si calcola la frequenza minima come $f_{MIN} = \frac{1}{T_{MAX}}$.

Punto c

- 9. Si regola R_{P1} circa al centro in modo da ottenere una frequenza di $2 \div 3 \text{kHz}$ e si collega il canale CH1 dell'oscilloscopio all'uscita V_{oQU} e il canale CH2 all'uscita V_{oTR} .
- 10. Dei segnali visualizzati, quadro e triangolare, si verifica che se $V_{oQU} = V_{oQUH}$ si ha una rampa in salita; se $V_{oQU} = V_{oQUL}$ si ha una rampa in discesa.


Punto d

- 11. Si verifica che agendo su R_{P1} e R_{P2} le ampiezze dei segnali d'uscita variano tra zero e le loro ampiezze massime. Inoltre, dovrà risultare che la variazione delle ampiezze e la variazione della frequenza devono essere indipendenti.
- 12. Si riportano i grafici correlati dei segnali V_o e V_{o1} , V_{o1} e V_{oQU} , V_o e V_{oTR} .

Valori misurati

- a. $V_{o1H} = 10,25V$; $V_{oH} = 9,75V$; T = 0,54ms ; f = 1,85kHz.
- b. $T_{MAX}=2,25\,ms$; $f_{MIN}=0,44kHz$ (teorico $f_{MIN}=0,44kHz$) ; $T_{MIN}=0,25\,ms$; $f_{MAX}=4kHz$ (teorico $f_{MAX}=5,347kHz$).
- c. $V_{oTR} = (0 \div 9,75)V$; $V_{oQU} = (0 \div 10,25)V$
- d. Variando l'ampiezza la frequenza rimane costante; variando la frequenza rimangono costanti le ampiezze.

Grafici correlati

