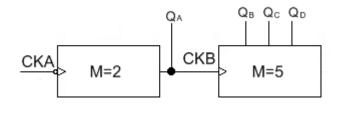
A cura dell'alunna **Martina Covelli** della classe IV sez. A Indirizzo Informatica Sperimentazione ABACUS Dell'Istituto Tecnico Industriale Statele A. Monaco di Cosenza

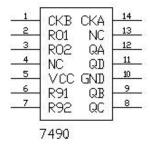
Anno scolastico 2009-2010

Supervisore Prof. **Giancarlo Fionda** Insegnante di Elettronica

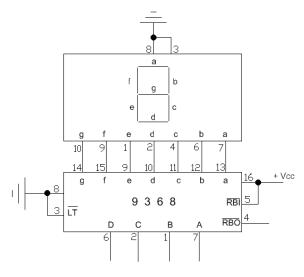
# VERIFICA DEL FUNZIONAMENTO DI CONTATORI ASINCRONI E VISUALIZZAZIONE DEL CONTEGGIO SU VISUALIZZATORE A LED A 7 SEGMENTI

Si esamina il funzionamento dei contatori asincroni


- 7490 asincrono modulo 2 x 57493 asincrono modulo 2 x 8
- 74390 asincrono modulo  $2 \times 5 \times 2 \times 5 = 10 \times 10$  (due contatori modulo 10)
- 74393 asincrono modulo 16 x 16 (due contatori modulo 16)


e si visualizza il conteggio su visualizzatore a display a LED a 7 segmenti.

#### **Contatore 7490**


È costituito da un contatore modulo 2 ed un contatore modulo 5. Il loro collegamento in cascata dà un contatore modulo  $2 \times 5 = 10$ .

# Schema interno e piedinatura





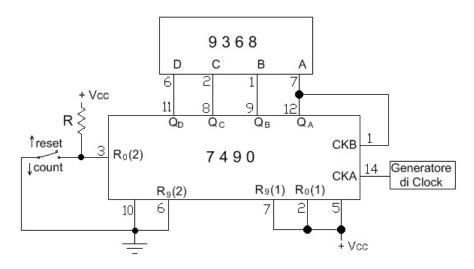
#### Circuito di visualizzazione



Si utilizza il decoder/driver binario esadecimale/7 segmenti 9368 che pilota un display a catodo comune, circuito già verificato precedentemente. Nel caso di conteggio a due cifre si aggiunge un altro visualizzatore.

#### Sequenza di conteggio

## Tabella funzionale di Reset/Count

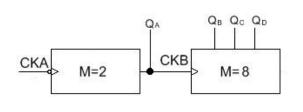

| Conteggio | Uscite           |         |         |         |  |
|-----------|------------------|---------|---------|---------|--|
|           | $Q_{\mathrm{D}}$ | $Q_{C}$ | $Q_{B}$ | $Q_{A}$ |  |
| 0         | L                | L       | L       | L       |  |
| 1         | L                | L       | L       | Н       |  |
| 2         | L                | L       | Н       | L       |  |
| 3         | L                | L       | Н       | Н       |  |
| 4         | L                | Н       | L       | L       |  |
| 5         | L                | Н       | L       | Н       |  |
| 6         | L                | Н       | Н       | L       |  |
| 7         | L                | Н       | Н       | Н       |  |
| 8         | Н                | L       | L       | L       |  |
| 9         | Н                | L       | L       | Н       |  |
| 10        | L                | L       | L       | L       |  |
|           |                  |         |         |         |  |

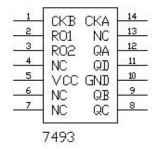
| Ingressi di reset |          |          | Uscite     |                  |         |         |       |
|-------------------|----------|----------|------------|------------------|---------|---------|-------|
| $R_0(1)$          | $R_0(2)$ | $R_9(1)$ | $R_{9}(2)$ | $Q_{\mathrm{D}}$ | $Q_{C}$ | $Q_{B}$ | $Q_A$ |
| Н                 | Н        | L        | X          | L                | L       | L       | L     |
| Н                 | Н        | X        | L          | L                | L       | L       | L     |
| X                 | X        | Н        | Н          | Н                | L       | L       | Н     |
| X                 | L        | X        | L          | Conta            |         |         |       |
| L                 | X        | L        | X          | Conta            |         |         |       |
| L                 | X        | X        | L          | Conta            |         |         |       |
| X                 | L        | L        | X          | Conta            |         |         |       |

Al fine di utilizzare un solo ingresso per resettare il contatore, si collegano  $R_{0(1)}$  e  $R_{9(2)}$  a  $V_{CC}$  (livello alto H) e  $R_{9(1)}$  a massa (livello basso L); per cui, osservando la tabella funzionale di reset/count, si avrà:

- Se  $R_{0(2)} = L \rightarrow il$  contatore conta;
- Se  $R_{0(2)}$  = H → il contatore viene resettato.

#### Schema del circuito





Per R si utilizza il valore di  $12K\Omega$ .

#### **Contatore 7493**

È costituito da un contatore modulo 2 ed un contatore modulo 8. Il loro collegamento in cascata dà un contatore modulo  $2 \times 8 = 16$ .

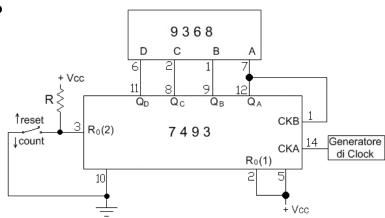
# Schema funzionale e piedinatura





# Sequenza di conteggio

| Tabella | funzional | e di | Reset/ | 'Count |
|---------|-----------|------|--------|--------|
|         |           |      |        |        |

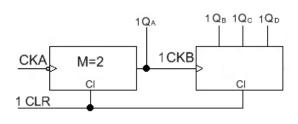

| Conteggio | Uscite           |                |         |                |  |
|-----------|------------------|----------------|---------|----------------|--|
|           | $Q_{\mathrm{D}}$ | Q <sub>C</sub> | $Q_{B}$ | Q <sub>A</sub> |  |
| 0         | L                | L              | L       | L              |  |
| 1         | L                | L              | L       | Н              |  |
| 2         | L                | L              | Н       | L              |  |
| 3         | L                | L              | Н       | Н              |  |
| 4         | L                | Н              | L       | L              |  |
| 5         | L                | Н              | L       | Н              |  |
| 6         | L                | Н              | Н       | L              |  |
| 7         | L                | Н              | Η       | Н              |  |
| 8         | Н                | L              | L       | L              |  |
| 9         | Н                | L              | L       | Н              |  |
| 10        | Н                | L              | Н       | L              |  |
| 11        | Н                | L              | Н       | Н              |  |
| 12        | Н                | Н              | L       | L              |  |
| 13        | Н                | Н              | L       | Н              |  |
| 14        | Н                | Н              | Н       | L              |  |
| 15        | Н                | Н              | Н       | Н              |  |
| 16        | L                | L              | L       | L              |  |

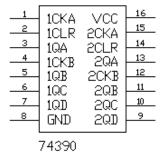
| Ingressi di reset |          | Uscite           |         |         |       |  |
|-------------------|----------|------------------|---------|---------|-------|--|
| $R_0(1)$          | $R_0(2)$ | $Q_{\mathrm{D}}$ | $Q_{C}$ | $Q_{B}$ | $Q_A$ |  |
| Н                 | Н        | L                | L       | L       | L     |  |
| L                 | X        | Conta            |         |         |       |  |
| X                 | L        | Conta            |         |         |       |  |

Al fine di utilizzare un solo ingresso per resettare il contatore, si collega  $R_{0(1)}$  a  $V_{CC}$  (livello alto H) e si ha:

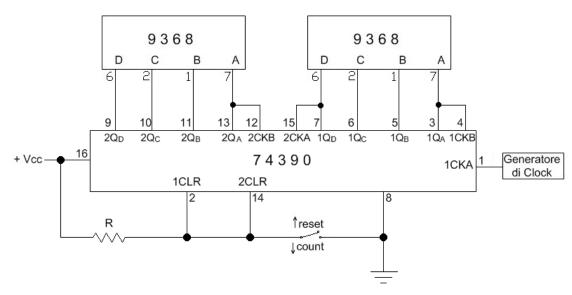
- Se  $R_{0(2)} = L \rightarrow il$  contatore conta;
- Se  $R_{0(2)} = H \rightarrow il$  contatore viene resettato.

# Schema del circuito





Per R si utilizza il valore di 12 K $\Omega$ .

#### Contatore 74390


Contiene due contatori modulo 2 x 5. A differenza del 7490, ognuno dei contatori è dotato di un solo ingresso di clear attivo a livello alto.

## Schema funzionale e piedinatura





## Schema del circuito

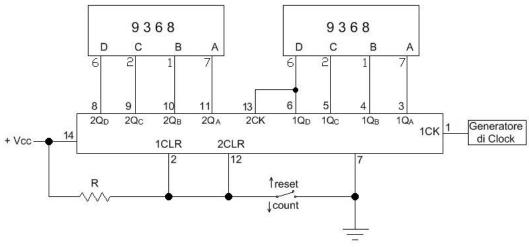


Supponiamo di volere una tensione a livello alto  $V_{OH}$  di 4V e che circoli nella resistenza R una corrente massima di  $80\mu A$ , si dimensiona il valore di R con interruttore aperto:

$$R = \frac{V_{CC} - V_{OH}}{I_{RH}} = \frac{5 - 4}{80 \cdot 10^{-6}} = 12,5 \text{K}\Omega$$

Si utilizza il valore commerciale di  $12K\Omega$ .

# Contatore 74393


Contiene due contatori asincroni binari a 4 bit modulo 16.

# 1 ICKA VCC 14 13 13 1QA 2CLR 12 1QB 2QA 1QC 2QB 1QD 2QC 5 GND 2QD 8

#### Piedinatura

Il clock è attivo nel fronte di discesa (negative edge-triggered) e causano un avanzamento del conteggio (+). Ciascun contatore dispone di un terminale CLR la cui attivazione (livello alto) provoca l'azzeramento del conteggio (CT = 0). Sulle quattro uscite, la meno significativa è  $Q_A$ , con peso  $2^0$ ; la più significativa  $Q_D$ , con peso  $2^3$ .

#### Schema del circuito



Per R si utilizza il valore di  $12K\Omega$ .

#### Sigle e valori dei componenti

- IC: 74LS90; 74LS93; 74LS390; 74LS393.
- R:  $2 \times 12K\Omega$ .
- 1 Micro Switch.

#### Strumenti e apparecchiature

Basetta di Bread-Board; Alimentatore 5V; Generatore di Funzione; doppio visualizzatore a display a LED con decoder 9368.

#### Procedimento

- 1. Si monta il circuito col 74LS90 e si collega l'alimentatore.
- 2. Si collega all'ingresso di clock l'uscita TTL del generatore di funzione con frequenza 0,3÷0,6Hz.
- 3. Si collegano le uscite del contatore agli ingressi del decoder 9368.
- 4. Si verifica che il micro switch sia aperto per essere sicuri che il contatore è azzerato.
- 5. Si chiude il micro switch e si verifica che sul display compaiono, in successione, i numeri da 0 a
- 6. Al decimo impulso il contatore si azzera, ossia da 9 passa a 0 e ricomincia il conteggio.
- 7. Durante questo nuovo conteggio si verifica la funzionalità dell'ingresso di reset aprendo il micro switch e verificando che il contatore si azzera.
- 8. Si chiude il micro switch e si verifica che il contatore riprende il conteggio.
- 9. Si monta il circuito col 74LS93 e si collega l'alimentatore.
- 10. Si ripetono i punti 2, 3, 4.
- 11. Si chiude il micro switch e si verifica che sul display compaiono, in successione, i numeri esadecimali da 0 a F.

- 12. Al sedicesimo impulso il contatore si azzera, ossia da F passa a 0 e ricomincia il conteggio.
- 13. Si ripetono i punti 7 e 8.
- 14. Si monta il circuito col 74LS390 e si collega il generatore.
- 15. Si ripetono i punti 2, 3, 4 con una frequenza di clock di 1Hz, utilizzando due visualizzatori.
- 16. Si chiude il micro switch e si verifica che sui display compaiono, in successione, i numeri da 00 a 99.
- 17. Al centesimo impulso il contatore si azzera, ossia da 99 passa a 00 e ricomincia il conteggio.
- 18. Si ripetono i punti 7 e 8.
- 19. Si monta il circuito col 74LS393 e si collega l'alimentatore.
- 20. Si ripete il punto 15.
- 21. Si chiude il micro switch e si verifica che sui display compaiono in successione i numeri, in esadecimale, da 00 a FF.
- 22. Al duecentocinquantaseiesimo impulso il contatore si azzera, ossia da FF passa a 00 e ricomincia il conteggio.
- 23. Si ripete il punto 18.