QUADRIPOLI LINEARI E TEMPO-INVARIANTI

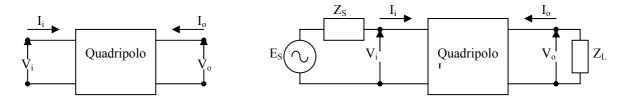
CIRCUITO EQUIVALENTE

QUADRIPOLI EQUIVALENTI A PARAMENTRI Z, Y, h, DI TRASMISSIONE

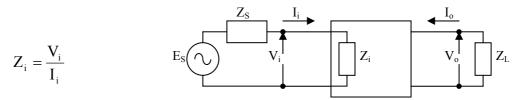
TEORIA E VERIFICA SPERIMENTALE

A CURA DEL PROF. GIANCARLO FIONDA INSEGNANTE DI ELETTRONICA PRESSO I.T.I.S. "A. MONACO" DI COSENZA

INDICE

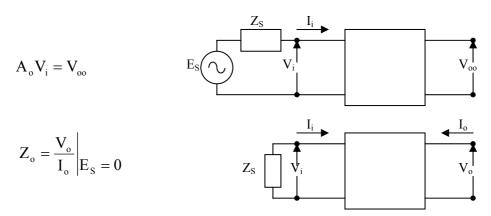

Circuito equivalente di un quadripolo	Pag.	2
Altri parametri caratteristici di un quadripolo	Pag.	4
Schematizzazione di un quadripolo con un circuito equivalente indipendente dalla sorgente e dal carico	Pag.	5
Modello a parametri Z (impedenza) o serie	Pag.	5
Modello a parametri Y (ammettenza) o parallelo	Pag.	8
Modello a parametri ibridi h		11
Impedenze dei quadripoli	Pag.	15
Modello a parametri di trasmissione o generali	Pag.	18
Tabelle riassuntive	Pag.	27
Principio di reciprocità	Pag. 7	29
Prima verifica del circuito equivalente di un quadripolo resistivo (lineare), con schematizzazione dell'ingresso come carico e dell'uscita come generatore di tensione	Pag.	31
Seconda verifica del circuito equivalente di un quadripolo resistivo (lineare) , con schematizzazione dell'ingresso come carico e dell'uscita come generatore di tensione	Pag.	35
Determinazione del quadripolo equivalente di due quadripoli resistivi simmetrici e verifica della sua validità. Verifica dell'influenza della tensione del generatore sorgente e del carico	Pag.	44
Verifica di due quadripoli simmetrici resistivi a T e a Π. Determinazione dei parametri dei loro circuiti equivalenti a parametri Z, Y, h, di trasmissione. Calcolo e verifica,	Do -	5.0
per ogni circuito equivalente, di R _i , R _o , α, A _o , A _v , β, A _{vt}	Pag.	20

QUADRIPOLI IN REGIME ARMONICO

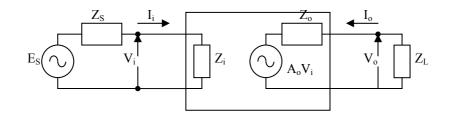

CIRCUITO EQUIVALENTE DI UN QUADRIPOLO

Un quadripolo è un elemento circuitale a quattro terminali: due terminali d'ingresso e due d'uscita. È lineare, o si comporta in modo lineare, se il segnale d'uscita ha la stessa forma d'onda di quello d'ingresso.

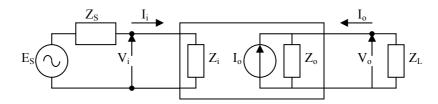
Un quadripolo lineare è schematizzabile mediante bipoli lineari.



Il generatore di sorgente è collegato tra due punti (terminali d'ingresso) tra i quali mantiene una differenza di potenziale ed eroga corrente, cioè eroga potenza: il generatore vede un utilizzatore che sotto la differenza di potenziale V_i assorbe una corrente I_i , ossia come se i terminali d'ingresso fossero collegati ad una impedenza Z_i , definita dalla legge di Ohm applicata ai terminali d'ingresso con l'uscita chiusa sul carico Z_L . Tale impedenza viene detta impedenza d'ingresso del quadripolo e dipende anche dall'impedenza di carico Z_L .



Il carico Z_L è collegato a due punti (terminali d'uscita) tra i quali viene mantenuta una differenza di potenziale e viene erogata corrente, ossia viene erogata potenza: il carico, guardando nei terminali d'uscita, vede un generatore, la cui forza elettromotrice dipende dalla tensione d'ingresso V_i .


Applicando il teorema di Thèvenin ai terminali d'uscita, si ha: la forza elettromotrice del generatore di tensione equivalente A_oV_i è uguale alla tensione tra i terminali d'uscita a vuoto; l'impedenza Z_o equivalente è l'impedenza vista tra i terminali d'uscita a vuoto una volta eliminati i generatori indipendenti (sicuramente con la sorgente e_s cortocircuitata.

Sovrapponendo le due schematizzazioni, si ha la schematizzazione del quadripolo come: una impedenza Z_i in ingresso; un generatore ideale di tensione A_oV_i con in serie una impedenza Z_o in uscita. Il circuito equivalente è quello di seguito riportato.

L'uscita può anche essere schematizzata come generatore di corrente (teorema di Norton): la corrente erogata dal generatore ideale di corrente equivalente I_{CC} è la corrente di cortocircuito d'uscita; l'impedenza equivalente Z_o posta in parallelo al generatore di corrente è la stessa di prima. noi AoVi e Zo, la corrente erogata dal generatore equivalente di corrente può essere calcolata come $I_{CC} = \frac{A_o V_i}{Z}$, secondo il principio del generatore equivalente.

ALTRI PARAMETRI CARATTERISTICI DI UN QUADRIPOLO

$$-A_{v} = \frac{V_{o}}{V_{i}}$$
 funzione di trasferimento

$$-A_{vt} = \frac{V_o}{E_o}$$
 funzione di trasferimento che tiene conto anche dell'influenza della sorgente

-
$$A_o = \frac{V_{oo}}{V_i}$$
 funzione di trasferimento a vuoto (uscita aperta)

$$-\alpha = \frac{V_i}{E_S} = \frac{Z_i}{Z_S + Z_i}$$
 attenuazione d'ingresso

$$- \beta = \frac{V_o}{V_{oo}} = \frac{Z_L}{Z_o + Z_L}$$
 attenuazione d'uscita

$$-\begin{array}{c} A_{vt} = \frac{V_o}{E_S} \cdot \frac{V_i}{V_i} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v \\ -A_v = \frac{V_o}{V_i} \cdot \frac{V_{oo}}{V_{oo}} = \frac{V_o}{V_{oo}} \cdot \frac{V_{oo}}{V_i} = \beta A_o \end{array} \Rightarrow A_{vt} = \alpha A_v = \alpha A_o \beta$$

Una variazione di Z_S influisce su Z_o , α , A_t , β ; una variazione di Z_L influisce su Z_i , , α , β , A_v . Nel caso in cui il quadripolo sia costituito da sole resistenze, al posto di Z_i e Z_o si avrà R_i e R_o .

SCHEMATIZZAZIONE DI UN QUADRIPOLO CON UN CIRCUITO EQUIVALENTE INDIPENDENTE DALLA SORGENTE E DAL CARICO

Un quadripolo lineare e tempo-invariante può essere schematizzato, indipendentemente dalla sorgente e dal carico, esprimendo due delle grandezze d'ingresso/uscita $(V_i,\ I_i,\ V_o,\ I_o)$ come combinazione lineare delle altre due. A secondo di quali grandezze si scelgono, si otterrà un modello, come di seguito riportato nella tabella.

Variabili dipendenti	Variabili indipendenti	Modello a parametri			
V_i , V_o	V_i , V_o	Z (impedenze) o serie			
I_i , I_o	V_i , V_o	Y (ammettenze) o parallelo			
V_i , I_o	I_i , V_o	h ibridi			
V_i , I_i	V_o , I_o	A, B, C, D di trasmissione o generali			

Tali equazioni permettono la rappresentazione del quadripolo mediante un circuito d'ingresso ed un circuito d'uscita separati tra loro.

MODELLO A PARAMETRI Z (IMPEDENZA) O SERIE

Il sistema di equazioni che definiscono il quadripolo è il seguente:

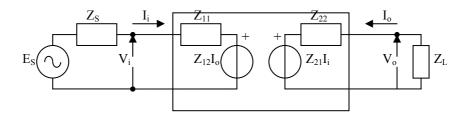
$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} \end{cases}$$

Si determinano i parametri Z nelle due seguenti condizioni di funzionamento del quadripolo: uscita a vuoto, che annulla i termini con I_o , e ingresso a vuoto, che annulla i termini con I_i .

Uscita aperta (a vuoto)
$$\Rightarrow I_0 = 0 \Rightarrow \begin{cases} V_i = Z_{11}I_i \\ V_0 = Z_{21}I_i \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} Z_{11} = \frac{V_i}{I_i} \bigg|_{I_o = 0} [\Omega] & \text{impedenza d'ingresso con} \\ & \text{uscita aperta} \end{cases}$$

$$Z_{21} = \frac{V_o}{I_i} \bigg|_{I_o = 0} [\Omega] & \text{impedenza di trasferimento dall'uscita} \\ & \text{all'ingresso con uscita aperta} \end{cases}$$


$$\begin{array}{l} \text{Ingresso aperto (a vuoto)} \ \Rightarrow \ I_i = 0 \ \Rightarrow \ \begin{cases} V_i = Z_{12} I_o \\ V_o = Z_{22} I_o \end{cases} \ \Rightarrow \ \\ \end{array}$$

$$\Rightarrow \begin{cases} Z_{12} = \frac{V_i}{I_o} \Big|_{I_i=0} [\Omega] & \text{impedenza} \quad \text{di trasferimento dall'ingresso} \\ \text{all'uscita con ingresso aperto} \end{cases}$$

$$Z_{22} = \frac{V_o}{I_o} \Big|_{I_i=0} [\Omega] & \text{impedenza d'uscita con} \\ \text{ingresso aperto} \end{cases}$$

I parametri Z hanno tutti la stessa dimensione di misura $[\Omega]$.

Nel modello, la prima equazione del sistema definisce la maglia d'ingresso: \mathbf{Z}_{11} è una impedenza con in serie un generatore di tensione $\mathbf{Z}_{12}\mathbf{I}_0$, che tiene conto dell'effetto dell'uscita sull'ingresso. La seconda equazione definisce la maglia d'uscita: $\mathbf{Z}_{21}\mathbf{I}_i$ è un generatore di tensione, che tiene conto dell'effetto dell'ingresso sull'uscita, con in serie l'impedenza \mathbf{Z}_{22} .

Il circuito equivalente è riportato in figura.

Nel caso in cui il quadripolo sia puramente ohmico, costituito da sole resistenze, al posto dell'impedenza Z si scrive R, resistenza.

Se $\mathbf{Z}_{11} = \mathbf{Z}_{22}$ il quadripolo si dice simmetrico; se $\mathbf{Z}_{12} = \mathbf{Z}_{22}$ il quadripolo si dice reciproco.

Nel caso di quadripolo simmetrico, è indifferente usare due dei terminali come ingresso o come uscita, ovvero scambiando i terminali d'ingresso con quelli d'uscita la risposta del quadripolo non cambia (ad esempio una linea bipolare).

Poiché nelle equazioni che descrivono il sistema compaiono sia al primo membro sia al secondo membro grandezze d'ingresso e d'uscita, non è possibile effettuare un confronto diretto di tali grandezze. Il modello a parametri di trasmissione, esprimendo le grandezze d'ingresso in funzione di quelle d'uscita, elimina tale inconveniente.

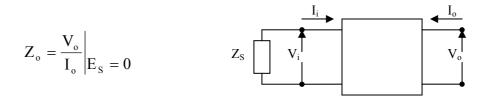
Calcolo dei parametri Z_i , Z_o , A_o , A_v , α , β , A_{vt} in funzione dei parametri Z.

Calcolo di Z_i: impedenza d'ingresso

$$Z_{i} = \frac{V_{i}}{I_{i}}$$

$$Z_{i} \longrightarrow V_{i}$$

$$V_{o} \longrightarrow Z_{L}$$

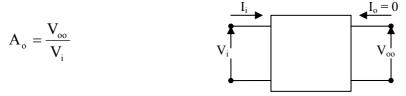

L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo e si esplicita V_i in funzione della sola corrente I_i .

$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} \\ V_{o} = -Z_{L}I_{o} \end{cases} \Rightarrow -Z_{L}I_{o} = Z_{21}I_{i} + Z_{22}I_{o} \Rightarrow I_{o}(Z_{L} + Z_{22}) = -Z_{21}I_{i} \Rightarrow I_{o} = -\frac{Z_{21}}{Z_{L} + Z_{22}}I_{i}$$

Sostituendo nella prima equazione, si calcola Z_i:

$$V_i = Z_{11}I_i - \frac{Z_{12}Z_{21}}{Z_1 + Z_{22}}I_i \implies Z_i = \frac{V_i}{I_i} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_1 + Z_{22}}$$

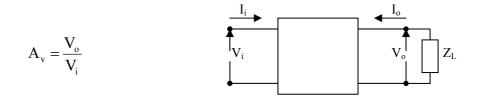
Calcolo di Z_o: impedenza d'uscita



L'ingresso è chiuso sull'impedenza della sorgente, e la tensione d'ingresso è $V_i = -Z_s I_i$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo e si esplicita V_o in funzione della sola corrente I_o .

Si sostituisce la terza equazione nella prima e si calcola I_i . L'espressione di I_i trovata si sostituisce nella seconda e si calcola Z_o .

$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} & \Rightarrow & -Z_{S}I_{i} = Z_{11}I_{i} + Z_{12}I_{o} & \Rightarrow & I_{i}\big(Z_{S} + Z_{11}\big) = -Z_{12}I_{o} & \Rightarrow \\ & \Rightarrow & I_{i} = -\frac{Z_{12}}{Z_{S} + Z_{11}}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} & \Rightarrow & V_{o} = -\frac{Z_{12}Z_{21}}{Z_{S} + Z_{11}}I_{o} + Z_{22}I_{o} & \Rightarrow & Z_{o} = \frac{V_{o}}{I_{o}} = Z_{22} - \frac{Z_{12}Z_{21}}{Z_{S} + Z_{11}}I_{o} \\ V_{i} = -Z_{S}I_{i} \end{cases}$$


Calcolo di A_o: funzione di trasferimento a vuoto (uscita aperta)

Si impone $I_0 = 0$ nelle equazioni del quadripolo e si divide membro a membro la seconda per la prima:

$$\begin{cases} V_{i} = Z_{11}I_{i} \\ V_{oo} = Z_{21}I_{i} \end{cases} \Rightarrow A_{o} = \frac{V_{oo}}{V_{i}} = \frac{Z_{21}}{Z_{11}}$$

Calcolo di A_v: funzione di trasferimento

L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Da questa si esplicita Io e la si mette a sistema con le equazioni del quadripolo e si sostituisce nella prima e nella seconda equazione.

$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} \Rightarrow \\ I_{o} = -\frac{V_{o}}{Z_{L}} \end{cases} \begin{cases} V_{i} = Z_{11}I_{i} - \frac{Z_{12}}{Z_{L}}V_{o} \\ V_{o} = Z_{21}I_{i} - \frac{Z_{22}}{Z_{L}}V_{o} \Rightarrow Z_{21}I_{i} = V_{o} + \frac{Z_{22}}{Z_{L}}V_{o} \Rightarrow I_{i} = \frac{Z_{L} + Z_{22}}{Z_{L}Z_{21}}V_{o} \end{cases}$$

Sostituendo nella prima equazione del sistema ridotto, si calcola A_v:

$$\begin{split} V_{i} &= \frac{Z_{11}(Z_{L} + Z_{22})}{Z_{L}Z_{21}} V_{o} - \frac{Z_{12}}{Z_{L}} V_{o} \quad \Rightarrow \quad \frac{Z_{11}(Z_{L} + Z_{22}) - Z_{12}Z_{21}}{Z_{L}Z_{21}} V_{o} = V_{i} \quad \Rightarrow \\ &\Rightarrow \quad A_{v} = \frac{V_{o}}{V_{i}} = \frac{Z_{L}Z_{21}}{Z_{11}(Z_{L} + Z_{22}) - Z_{12}Z_{21}} \end{split}$$

Calcolo di α e di β: rispettivamente, attenuazione d'ingresso e attenuazione d'uscita

$$\alpha = \frac{V_i}{E_S} = \frac{Z_i}{Z_S + Z_i}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{V_o}{A_o V_i} = \frac{Z_L}{Z_o + Z_L}$$

Calcolo di Avi: funzione di trasferimento che tiene conto anche dell'influenza della sorgente

$$A_{vt} = \frac{V_o}{E_S} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v$$

MODELLO A PARAMETRI Y (AMMETTENZA) O PARALLELO

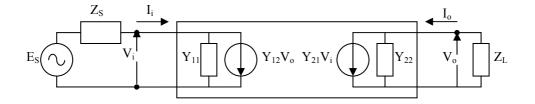
Il sistema di equazioni che definiscono il quadripolo è il seguente:

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{o} \\ I_{o} = Y_{21}V_{i} + Y_{22}V_{o} \end{cases}$$

Si determinano i parametri Y nelle due seguenti condizioni di funzionamento del quadripolo: uscita in cortocircuito, che annulla i termini con V_o , e ingresso in cortocircuito, che annulla i termini con V_i .

$$\mbox{ Uscita in cortocircuito } \Rightarrow \ V_o = 0 \ \Rightarrow \ \begin{cases} I_i = Y_{11} V_i \\ I_o = Y_{21} V_i \end{cases} \ \Rightarrow \$$

$$\Rightarrow \begin{cases} \left. Y_{11} = \frac{I_i}{V_i} \right|_{V_o = 0} [S] & \text{ammettenza} \quad d'ingresso \quad con \\ \text{uscita} & \text{in} \quad cortocircuito} \\ Y_{21} = \frac{I_o}{V_i} \right|_{V_o = 0} [S] & \text{ammettenza} \quad di \quad trasferimento \quad dall'uscita \quad all'ingresso \\ \text{con} \quad uscita \quad in \quad cortocircuito} \end{cases}$$


$$\begin{array}{l} \text{Ingresso in cortocircuito} \ \Rightarrow \ V_{i} = 0 \ \Rightarrow \ \begin{cases} I_{_{i}} = Y_{_{12}}V_{_{o}} \\ I_{_{o}} = Y_{_{22}}V_{_{o}} \end{cases} \ \Rightarrow \label{eq:cortocircuito}$$

$$\Rightarrow \begin{cases} Y_{12} = \frac{I_i}{V_o} \bigg|_{V_i = 0} [S] & \text{ammettenza} & \text{di trasferimento dall'ingresso all'uscita} \\ & \text{con ingresso in cortocircuito} \end{cases}$$

$$\begin{cases} Y_{22} = \frac{I_o}{V_o} \bigg|_{V_i = 0} [S] & \text{ammettenza d'uscita con} \\ & \text{ingresso in cortocircuito} \end{cases}$$

I parametri Y hanno tutti la stessa dimensione di misura [S, Siemens].

Nel modello, la prima equazione del sistema definisce la maglia d'ingresso: Y_{11} è una ammettenza con in parallelo un generatore di corrente $Y_{12}V_0$, che tiene conto dell'effetto dell'uscita sull'ingresso. La seconda equazione definisce la maglia d'uscita: $Y_{21}V_i$ è un generatore di corrente, che tiene conto dell'effetto dell'ingresso sull'uscita, con in con in parallelo l'ammettenza Y_{22} . Il circuito equivalente è riportato in figura.

Nel caso in cui il quadripolo sia puramente ohmico, costituito da sole resistenze, al posto dell'ammettenza Y si scrive G, conduttanza

Calcolo dei parametri Z_i , Z_o , A_o , A_v , α , β , A_{vt} in funzione dei parametri Y.

Calcolo di Z_i: impedenza d'ingresso

$$Z_{i} = \frac{V_{i}}{I_{i}}$$

$$Z_{i} \longrightarrow V_{i}$$

$$V_{o} \longrightarrow Z_{L}$$


L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo e si esplicita I_i in funzione della sola tensione V_i .

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{o} \\ I_{o} = Y_{21}V_{i} + Y_{22}V_{o} \\ I_{o} = -\frac{V_{o}}{Z_{L}} \end{cases} \Rightarrow -\frac{V_{o}}{Z_{L}} = Y_{21}V_{i} + Y_{22}V_{o} \Rightarrow V_{o} \left(Y_{22} + \frac{1}{Z_{L}}\right) = -Y_{21}V_{i} \Rightarrow V_{o} = -\frac{Y_{21}Z_{L}}{1 + Y_{22}Z_{L}}V_{i}$$

Sostituendo nella prima equazione, si calcola Z_i:

$$I_{i} = Y_{11}V_{i} - \frac{Y_{12}Y_{21}Z_{L}}{1 + Y_{22}Z_{L}}V_{i} \quad \Rightarrow \quad Z_{i} = \frac{V_{i}}{I_{i}} = \frac{1}{Y_{11} - \frac{Y_{12}Y_{21}Z_{L}}{1 + Y_{22}Z_{L}}}$$

Calcolo di Zo: impedenza d'uscita

L'ingresso è chiuso sull'impedenza della sorgente, e la tensione d'ingresso è $V_i = -Z_s I_i$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo e si esplicita I_o in funzione della sola tensione V_o .

Si sostituisce la terza equazione nella prima e si calcola V_i . L'espressione di V_i trovata si sostituisce nella seconda e si calcola Z_o .

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{o} & \Rightarrow & -\frac{V_{i}}{Z_{S}} = Y_{11}V_{i} + Y_{12}V_{o} & \Rightarrow & V_{i}\bigg(Y_{11} + -\frac{1}{Z_{S}}\bigg) = Y_{12}V_{o} & \Rightarrow \\ & \Rightarrow & V_{i} = -\frac{Y_{12}Z_{S}}{1 + Y_{11}Z_{S}}V_{o} \\ I_{o} = Y_{21}V_{i} + Y_{22}V_{o} & \Rightarrow & I_{o} = -\frac{Y_{12}Y_{21}Z_{S}}{1 + Y_{11}Z_{S}}V_{o} + Y_{22}V_{o} & \Rightarrow & Z_{o} = \frac{V_{o}}{I_{o}} = \frac{1}{Y_{22} - \frac{Y_{12}Y_{21}Z_{S}}{1 + Y_{11}Z_{S}}} \\ I_{i} = -\frac{V_{i}}{Z_{S}} \end{cases}$$

Calcolo di Ao: funzione di trasferimento a vuoto (uscita aperta)

$$A_{o} = \frac{V_{oo}}{V_{i}}$$

$$V_{i}$$

$$V_{oo}$$

Si impone $I_o = 0$ nelle equazioni del quadripolo e $V_o = V_{oo}$; dalla seconda si calcola A_o :

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{oo} \\ 0 = Y_{21}V_{i} + Y_{22}V_{oo} \implies A_{o} = \frac{V_{oo}}{V_{i}} = -\frac{Y_{21}}{Y_{22}} \end{cases}$$

Calcolo di A_v: funzione di trasferimento

$$A_{v} = \frac{V_{o}}{V_{i}}$$

$$V_{i}$$

$$V_{o}$$

$$Z$$

L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si sostituisce la terza equazione nella seconda e si calcola A_v .

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{o} \\ I_{o} = Y_{21}V_{i} + Y_{22}V_{o} \implies -\frac{V_{o}}{Z_{L}} = Y_{21}V_{i} + Y_{22}V_{o} \implies \\ \implies V_{o} \left(Y_{22} + \frac{1}{Z_{L}}\right) = -Y_{21}V_{i} \implies A_{o} = \frac{V_{o}}{V_{i}} = -\frac{Y_{21}Z_{L}}{1 + Y_{22}Z_{L}} \\ I_{o} = -\frac{V_{o}}{Z_{L}} \end{cases}$$

Calcolo di α e di β: rispettivamente, attenuazione d'ingresso e attenuazione d'uscita

$$\alpha = \frac{V_i}{E_S} = \frac{Z_i}{Z_S + Z_i}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{V_o}{A_o V_i} = \frac{Z_L}{Z_o + Z_L}$$

Calcolo di A_{vt}: funzione di trasferimento che tiene conto anche dell'influenza della sorgente

$$A_{vt} = \frac{V_o}{E_S} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v$$

MODELLO A PARAMETRI IBRIDI h

Il sistema di equazioni che definiscono il quadripolo è il seguente:

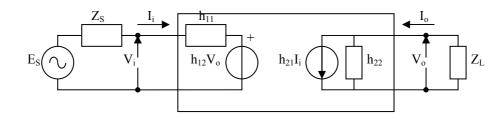
$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} \end{cases}$$

Si determinano i parametri Y nelle due seguenti condizioni di funzionamento del quadripolo: uscita in cortocircuito, che annulla i termini con V_o , e ingresso in cortocircuito, che annulla i termini con V_i .

10

Uscita in cortocircuito
$$\Rightarrow V_o = 0 \Rightarrow \begin{cases} V_i = h_{11}I_i \\ I_o = h_{21}I_i \end{cases} \Rightarrow$$

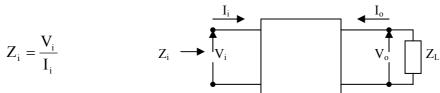
$$\Rightarrow \begin{cases} h_{11} = \frac{V_i}{I_i} \Big|_{V_o = 0} [\Omega] & \text{impedenza d'ingresso con} \\ \text{uscita in cortocircuito} \\ h_{21} = \frac{I_o}{I_i} \Big|_{V_o = 0} [\text{ad}] & \text{coefficiente di trasferimento della tensione} \\ \text{d'uscita nella maglia d'ingresso} \end{cases}$$


$$\begin{array}{l} \text{Ingresso aperto (a vuoto)} \ \Rightarrow \ I_i = 0 \ \Rightarrow \ \begin{cases} V_i = h_{12} V_o \\ I_o = h_{22} V_o \end{cases} \ \Rightarrow \ \end{cases}$$

$$\Rightarrow \begin{cases} h_{12} = \frac{V_i}{V_o} \bigg|_{I_i = 0} \text{ [ad]} & \text{coefficiente di trasferimento della corrente} \\ d'ingresso nella maglia d'uscita \end{cases}$$

$$\Rightarrow \begin{cases} h_{12} = \frac{I_o}{V_o} \bigg|_{I_i = 0} \text{ [}\Omega\text{]} & \text{ammettenza dell'uscita con} \\ \text{ingresso aperto} \end{cases}$$

I parametri h sono detti ibridi in quanto non hanno tutti le stesse dimensioni...

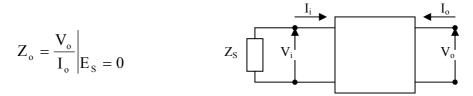

Nel modello, la prima equazione del sistema definisce la maglia d'ingresso: \mathbf{h}_{11} è una impedenza con in serie un generatore di tensione $\mathbf{h}_{12}\mathbf{V}_0$, che tiene conto dell'effetto dell'uscita sull'ingresso. La seconda equazione definisce la maglia d'uscita: $\mathbf{h}_{21}\mathbf{I}_i$ è un generatore di corrente, che tiene conto dell'effetto dell'ingresso sull'uscita, con in parallelo l'ammettenza \mathbf{h}_{22} . Il circuito equivalente è riportato in figura.

Se si adotta la convenzione di considerare la corrente I_o uscente, il generatore di corrente dipendente $h_{21}I_i$ ha il verso opposto.

Calcolo dei parametri Z_i , Z_o , A_o , A_v , α , β , A_{vt} in funzione dei parametri Y.

Calcolo di Z_i: impedenza d'ingresso

L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione, esplicitando in essa I_o , a sistema con le equazioni del quadripolo e si sostituisce nella seconda, da cui si calcola V_o in funzione di I_i .


$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} \\ I_{o} = -\frac{V_{o}}{Z_{L}} \end{cases} \Rightarrow -\frac{V_{o}}{Z_{L}} = h_{21}I_{i} + h_{22}V_{o} \Rightarrow V_{o}\left(h_{22} + \frac{1}{Z_{L}}\right) = -h_{21}I_{i} \Rightarrow V_{o} = -\frac{h_{21}Z_{L}}{1 + h_{22}Z_{L}}I_{i}$$

Sostituendo nella prima equazione, si calcola Z_i:

trovata si sostituisce nella seconda e si calcola Z₀.

$$V_i = h_{11}I_i - \frac{h_{12}h_{21}Z_L}{1 + h_{22}Z_L}I_i \implies Z_i = \frac{V_i}{I_i} = h_{11} - \frac{h_{12}h_{21}Z_L}{1 + h_{22}Z_L}$$

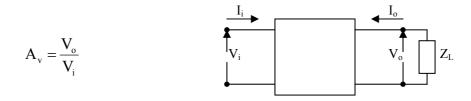
Calcolo di Z_o: impedenza d'uscita

L'ingresso è chiuso sull'impedenza della sorgente, e la tensione d'ingresso è $V_i = -Z_s I_i$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo e si esplicita I_o in funzione della sola tensione V_o . Si sostituisce la terza equazione nella prima e si calcola V_i in funzione di V_o . L'espressione di V_i

$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} & \Rightarrow & -\frac{V_{i}}{Z_{S}} = h_{11}I_{i} + h_{12}V_{o} & \Rightarrow & I_{i} = -\frac{h_{12}}{h_{11} + Z_{S}}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} & \Rightarrow & I_{o} = -\frac{h_{12}h_{21}}{h_{11} + Z_{S}}V_{o} + h_{22}V_{o} & \Rightarrow & Z_{o} = \frac{V_{o}}{I_{o}} = \frac{1}{h_{22} - \frac{h_{12}h_{21}}{h_{11} + Z_{S}}} \\ V_{i} = -Z_{S}I_{i} \end{cases}$$

Calcolo di A₀: funzione di trasferimento a vuoto (uscita aperta)

$$A_{o} = \frac{V_{oo}}{V_{i}}$$


$$V_{i}$$

$$V_{oo}$$

Si impone $I_o = 0$ nelle equazioni del quadripolo e $V_o = V_{oo}$; dalla seconda si calcola I_i e si sostituisce nella prima, dalla quale si calcola A_o :

$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{oo} & \Rightarrow V_{i} = -\frac{h_{11}h_{21}}{h_{22}}V_{oo} + h_{12}V_{oo} & \Rightarrow A_{o} = \frac{V_{oo}}{V_{i}} = \frac{1}{h_{12} - \frac{h_{11}h_{21}}{h_{22}}} \\ 0 = h_{21}I_{i} + h_{22}V_{oo} & \Rightarrow I_{i} = -\frac{h_{21}}{h_{22}}V_{oo} \end{cases}$$

Calcolo di A_v: funzione di trasferimento

L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = -Z_L I_o$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione, esplicitando in essa I_o in funzione di V_o , a sistema con le equazioni del quadripolo e si sostituisce nella seconda, da cui si calcola I_i in funzione di V_o .

$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} \\ I_{o} = -\frac{V_{o}}{Z_{L}} \end{cases} \Rightarrow -\frac{V_{o}}{Z_{L}} = h_{21}I_{i} + h_{22}V_{o} \Rightarrow V_{o}\left(h_{22} + \frac{1}{Z_{L}}\right) = -h_{21}I_{i} \Rightarrow I_{i} = -\frac{1 + h_{22}Z_{L}}{h_{21}Z_{L}}V_{o}$$

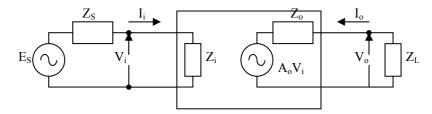
Sostituendo nella prima equazione, si calcola A_v:

$$V_{i} = -\frac{h_{11}(1 + h_{22}Z_{L})}{h_{21}Z_{L}}V_{o} + h_{12}V_{o} \implies A_{v} = \frac{V_{o}}{V_{i}} = \frac{1}{h_{12} - \frac{h_{11}(1 + h_{22}Z_{L})}{h_{21}Z_{V}}}$$

Calcolo di α e di β: rispettivamente, attenuazione d'ingresso e attenuazione d'uscita

$$\alpha = \frac{V_i}{E_S} = \frac{Z_i}{Z_S + Z_i}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{V_o}{A_o V_i} = \frac{Z_L}{Z_o + Z_L}$$


Calcolo di Avi: funzione di trasferimento che tiene conto anche dell'influenza della sorgente

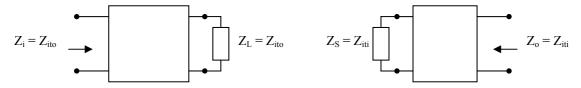
$$A_{vt} = \frac{V_o}{E_S} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v$$

IMPEDENZE DEI QUADRIPOLI

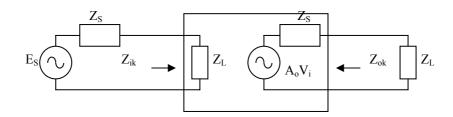
Ai terminali d'ingresso viene collegato un generatore reale, che fornisce la sollecitazione; ai terminali d'uscita è collegata una impedenza di carico.

Come già detto, un quadripolo in ingresso viene schematizzato da una impedenza, e in uscita da un generatore.

Il generatore di sorgente può benissimo rappresentare l'uscita di un quadripolo che precede e l'impedenza di carico Z_L l'ingresso di un quadripolo che segue. Mettendo in cascata più quadripoli, è importante conoscere i parametri che caratterizzano i dispositivi a monte e a valle di quello esaminato.


I parametri che maggiormente interessano un quadripolo sono:

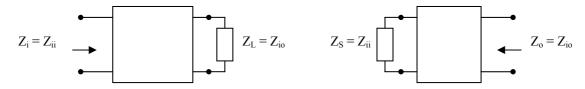
- impedenza d'ingresso;
- impedenza d'uscita;
- impedenze iterative;
- impedenze immagine;
- impedenza caratteristica.


Delle impedenze d'ingresso e d'uscita se ne è già parlato.

Impedenze iterative

Si definiscono **impedenze iterative** (Z_{iti} , Z_{ito}) due impedenze che godono della seguente proprietà: se si chiudono i morsetti d'uscita sull'impedenza Z_{ito} , l'impedenza mostrata ai morsetti d'ingresso (Z_i) risulta pari a Z_{ito} ; viceversa, se si chiudono i morsetti d'ingresso sull'impedenza Z_{iti} , l'impedenza mostrata ai morsetti d'uscita (Z_o) risulta uguale a Z_{iti} .

Alternativamente, si può definire impedenza iterativa d'ingresso quella impedenza d'ingresso di valore uguale all'impedenza di carico; e impedenza iterativa d'uscita quella impedenza d'uscita di valore uguale all'impedenza del generatore sorgente.

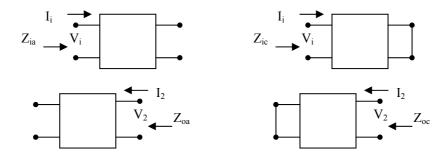

$$-Z_{i} = \frac{V_{i}}{I_{i}} = Z_{iti} = Z_{L}$$
 impedenza iterativa d'ingresso

$$-Z_o = \frac{V_o}{I_o}\Big|_{E_S = 0} = Z_{ito} = Z_S$$
 impedenza iterativa d'uscita

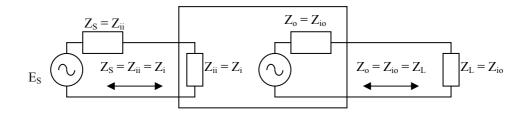
Impedenze immagine

Si definiscono impedenze immagine d'ingresso (Z_{ii}) e d'uscita (Z_{io}) quelle impedenze particolari che si misurano ai morsetti d'ingresso e d'uscita in modo che:

- se si chiude l'uscita sull'impedenza immagine d'uscita Z_{io} , in ingresso si vede l'impedenza immagine d'ingresso Z_{ii} ;
- se si chiude l'ingresso sull'impedenza immagine d'ingresso Z_{ii} , in uscita si vede l'impedenza immagine d'uscita Z_{io} .



Le impedenze immagine dipendono dalla costituzione del quadripolo e sono determinabili tramite misure di impedenze:


$$Z_{ii} = \sqrt{Z_{ia} \cdot Z_{ic}}$$
 $Z_{io} = \sqrt{Z_{oa} \cdot Z_{oc}}$

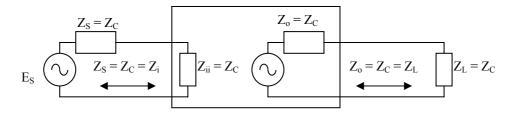
dove

- Z_{ia}: impedenza ai morsetti d'ingresso quando i morsetti d'uscita sono aperti
- Z_{ic}: impedenza ai morsetti d'ingresso quando i morsetti d'uscita sono in cortocircuito
- Z_{oa}: impedenza ai morsetti d'uscita quando i morsetti d'ingresso sono aperti
- Z_{oc}: impedenza ai morsetti d'uscita quando i morsetti d'ingresso sono in cortocircuito

Un quadripolo chiuso sulle proprie impedenze immagine risulta adattato: $Z_S = Z_{ii}$ e $Z_o = Z_{io}$. Risulta verificata la condizione di adattamento sia ai morsetti d'ingresso sia ai morsetti d'uscita.

Per le proprietà delle impedenze immagini si ha:

- Il quadripolo mostra al generatore una impedenza Z_{ii} e quindi ai morsetti d'ingresso è verificata la condizione di adattamento: $Z_S = Z_{ii} = Z_i$.
- Il quadripolo mostra ai morsetti d'uscita un'impedenza pari a Z_{io} e quindi è verificata anche ai morsetti d'uscita la condizione di adattamento: $Z_o = Z_{io} = Z_L$.


Se le due impedenze immagini sono uguali, Z_{ii} = Z_{io} , il quadripolo è **simmetrico**.

Un quadripolo è simmetrico quando le due coppie di terminali possono essere utilizzate indifferentemente come ingresso o come uscita. Un doppino telefonico, linea bifilare, è simmetrico, il suo comportamento non cambia qualunque dei due capi usiamo come ingresso o come uscita.

Per i quadripoli simmetrici ($Z_{ii} = Z_{io}$) le impedenze immagini sono uguali tra loro e sono uguali alle impedenze iterative:

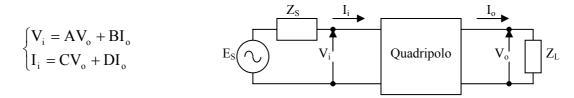
$$Z_{ii} = Z_{io} = Z_{iti} = Z_{ito} = Z_{C}$$

In questo caso si ha un valore comune di impedenza detto **impedenza caratteristica** (Z_o) del quadripolo. Poiché essa è sia immagine che iterativa, gode delle proprietà di entrambe.

Un quadripolo, chiuso sulla sua impedenza caratteristica è **adattato**, poiché le sue impedenze d'ingresso (Z_i) e d'uscita (Z_o) sono uguali a Z_C .

Una linea di trasmissione è rappresentata da un quadripolo simmetrico. Se essa è chiusa sulla propria impedenza caratteristica, godrà delle seguenti proprietà:

- l'impedenza di ingresso è $Z_i = Z_C$



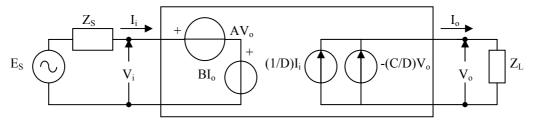
- L'impedenza d'uscita è $Z_0 = Z_C$
- La linea è in condizioni di adattamento sia in ingresso che in uscita. Se l'impedenza caratteristica è puramente resistiva ($Z_C = R_o$), l'adattamento è sia energetico sia di uniformità; pertanto, si ha il massimo trasferimento di potenza.
- In ogni sezione della linea l'impedenza è Z_C . Troncando in un suo punto la linea, il tronco restante presenterà ancora impedenza caratteristica Z_C .

MODELLO A PARAMETRI DI TRASMISSIONE O GENERALI

Il sistema di equazioni che definiscono il quadripolo è il seguente:

A, B, C, D sono costanti complesse e dipendono dagli elementi passivi che sostituiscono il quadripolo; A e D adimensionali, B impedenza, C ammettenza. Per questo modello il verso assunto come positivo della corrente d'uscita è quello uscente.

Si determinano i parametri di trasmissione nelle due seguenti condizioni di funzionamento del quadripolo: uscita aperta, che annulla i termini con I_o , e uscita in cortocircuito, che annulla i termini con V_o .


$$\text{Uscita aperta (a vuoto)} \ \Rightarrow \ I_o = 0 \ \Rightarrow \ \begin{cases} V_i = AV_o \\ I_i = CV_o \end{cases} \ \Rightarrow \ \begin{cases} A = \frac{V_i}{V_o} \bigg|_{I_o = 0} \left[\text{a dim ensionale} \right] \\ C = \frac{I_i}{V_o} \bigg|_{I_o = 0} \left[\Omega^{-1} \right] \end{cases}$$

$$\begin{aligned} \textbf{Uscita in cortocircuito} \ \Rightarrow \ V_o = 0 \ \Rightarrow \ \begin{cases} V_i = BI_o \\ I_i = DI_o \end{cases} \ \Rightarrow \ \begin{cases} B = \frac{V_i}{I_o} \bigg|_{V_o = 0} \big[\Omega \big] \\ D = \frac{I_i}{I_o} \bigg|_{V_o = 0} \big[\text{a dim ensionale} \big] \end{cases}$$

Per definire il circuito equivalente bisogna disporre di una equazione esplicitata in funzione di una grandezza d'ingresso ed una equazione esplicitata in funzione di una grandezza d'uscita. La prima equazione del sistema è già esplicitata in funzione di V_i , la seconda verrà esplicitata in funzione di I_o .

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow \begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{o} = \frac{1}{D}I_{i} - \frac{C}{D}V_{o} \end{cases}$$

La prima equazione del sistema definisce la maglia d'ingresso: $\mathbf{AV_0}$ è un generatore dipendente dalla tensione d'uscita, con in serie un generatore di tensione $\mathbf{BI_0}$ dipendente dalla corrente d'uscita. La seconda equazione, esplicitata rispetto a I_0 , definisce la maglia d'uscita: $(1/D)I_i$ è un generatore di corrente dipendente dalla corrente d'ingresso, con in parallelo un generatore di corrente $-(C/D)V_0$ dipendente dalla tensione d'uscita. Il circuito equivalente è riportato in figura.

Calcolo dei parametri Z_i , Z_o , A_o , A_v , α , β , A_{vt} in funzione dei parametri Y.

Calcolo di Z_i: impedenza d'ingresso

$$Z_{i} = \frac{V_{i}}{I_{i}}$$

$$Z_{i} \longrightarrow V_{o}$$

$$Z_{I}$$

L'impedenza d'ingresso, essendo il rapporto tra V_i e I_i , si ottiene facendo il rapporto membro a membro tra le due equazioni del sistema e tenendo conto che $Z_L = \frac{V_o}{I}$, si ha:

$$Z_{i} = \frac{V_{i}}{I_{i}} = \frac{AV_{o} + BI_{o}}{CV_{o} + DI_{o}} = \frac{A\frac{V_{o}}{I_{o}} + B}{C\frac{V_{o}}{I_{o}} + D} = \frac{AZ_{L} + B}{CZ_{L} + D}$$

Calcolo di Z₀: impedenza d'uscita

$$Z_{o} = \frac{V_{o}}{I_{o}} \Big|_{E_{S}} = 0$$

$$Z_{S} \bigvee_{i} \bigvee_{v_{o}} V_{o}$$

L'ingresso è chiuso sull'impedenza della sorgente, e la tensione d'ingresso è $V_i = -Z_s I_i$, il segno meno indica che la tensione e la corrente hanno segno opposto. Si mette tale equazione a sistema con le equazioni del quadripolo. Considerando, in questo caso, la corrente I_o entrante, i termini in I_o che compaiono nel sistema devono essere considerati negativi e cambiati di segno.

Si esplicita la terza equazione rispetto a I_i e si sostituisce nella seconda, esplicitandola rispetto a V_i.

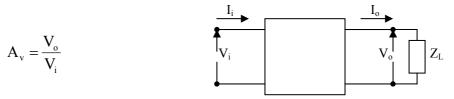
$$\begin{cases} V_{i} = AV_{o} - BI_{o} \\ \\ I_{i} = CV_{o} - DI_{o} \implies -\frac{V_{i}}{Z_{S}} = CV_{o} - DI_{o} \implies V_{i} = -Z_{S}CV_{o} + Z_{S}DI_{o} \\ \\ V_{i} = -Z_{S}I_{i} \implies I_{i} = -\frac{V_{i}}{Z_{S}} \end{cases}$$

Si uguagliano i secondi membri della prima e della seconda equazione e si calcola Z₀:

$$AV_o - BI_o = -Z_sCV_o + Z_sDI_o \implies V_o(A + Z_sC) = I_o(B + Z_sD) \implies Z_o = \frac{V_o}{I_o} = \frac{B + Z_sD}{A + Z_sC}$$

Calcolo di Ao: funzione di trasferimento a vuoto (uscita aperta)

$$A_{o} = \frac{V_{oo}}{V_{i}}$$


$$V_{i}$$

$$V_{oc}$$

Si impone $I_0 = 0$ nelle equazioni del quadripolo e $V_0 = V_{00}$; dalla prima si calcola A_0 :

$$\begin{cases} V_{i} = AV_{oo} & \Rightarrow & A_{o} = \frac{V_{oo}}{V_{i}} = \frac{1}{A} \\ I_{i} = CV_{oo} \end{cases}$$

Calcolo di A_v: funzione di trasferimento

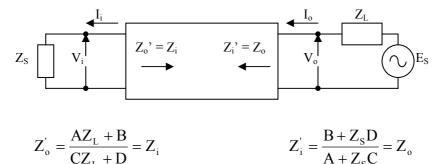
L'uscita è chiusa sul carico Z_L , e la tensione d'uscita è $V_o = Z_L I_o$. Si mette tale equazione, esplicitando in essa I_o in funzione di V_o , a sistema con le equazioni del quadripolo, si sostituisce la terza nella prima e si calcola A_v .

$$\begin{cases} V_{i} = AV_{o} + BI_{o} & \Rightarrow V_{i} = AV_{o} + \frac{B}{Z_{L}}V_{o} = \frac{AZ_{L} + B}{Z_{L}}V_{o} & \Rightarrow A_{v} = \frac{V_{o}}{V_{i}} = \frac{Z_{L}}{AZ_{L} + B} \\ I_{i} = CV_{o} + DI_{o} \\ I_{o} = \frac{V_{o}}{Z_{L}} \end{cases}$$

Calcolo di α e di β: rispettivamente, attenuazione d'ingresso e attenuazione d'uscita

$$\alpha = \frac{V_i}{E_S} = \frac{Z_i}{Z_S + Z_i}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{V_o}{A_o V_i} = \frac{Z_L}{Z_o + Z_L}$$


Calcolo di Avi: funzione di trasferimento che tiene conto anche dell'influenza della sorgente

$$A_{vt} = \frac{V_o}{E_S} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v$$

19

Alcune considerazioni

Supponendo di alimentare il quadripolo dai terminali d'uscita attraverso l'impedenza Z_L e di chiudere i terminali d'ingresso su un carico di impedenza Z_S , Z_o assumerà il ruolo di impedenza d'ingresso Z_i e Z_i quello di impedenza d'uscita Z_o .

Il confronto tra queste due relazioni mette in rilievo che il quadripolo può essere considerato in modo equivalente in entrambi i sensi di funzionamento scambiando unicamente tra loro i parametri A e D. Su questa base, e notando che l'alimentazione sul lato d'uscita comporta inversione del senso delle correnti, le equazioni di funzionamento in questa condizione dovranno essere, con riferimento al primo sistema,

$$\begin{cases} V_o = DV_i - BI_i \\ -I_o = CV_i - AI_i \end{cases}.$$

La coppia di equazioni riferite ai terminali d'uscita si possono anche ottenere elaborando le equazioni del primo sistema nel seguente modo.

Si moltiplica la prima equazione per D e la seconda per B, e si sottrae la seconda dalla prima:

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow \begin{cases} DV_{i} = ADV_{o} + BDI_{o} \\ BI_{i} = BCV_{o} + BDI_{o} \end{cases}$$
$$DV_{i} - BI_{i} = (AD - BC)V_{o} \Rightarrow V_{o} = \frac{DV_{i} - BI_{i}}{AD - BC}$$

Si moltiplica la prima equazione per C e la seconda per A, e si sottrae la prima dalla seconda:

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow \begin{cases} CV_{i} = ACV_{o} + BCI_{o} \\ AI_{i} = ACV_{o} + ADI_{o} \end{cases}$$
$$AI_{i} - CV_{i} = (AD - BC)I_{o} \Rightarrow -I_{o} = \frac{CV_{i} - AI_{i}}{AD - BC}$$

$$V_{o} = \frac{DV_{i} - BI_{i}}{AD - BC}$$
Riassumendo:
$$-I_{o} = \frac{CV_{i} - AI_{i}}{AD - BC}$$

Tali equazioni risultano uguali a quelle del sistema precedente se risulta AD - BC = 1 (principio di reciprocità).

Pertanto, un quadripolo passivo è completamente identificato se sono note tre delle quattro costanti, indipendentemente dalla struttura del circuito. È possibile studiare il funzionamento di un circuito sostituendo ad esso un quadripolo composto da tre impedenze collegate tra loro a Π o a T.

Impedenze iterative

L'**impedenza iterativa d'ingresso Z**_{iti} è quella impedenza d'ingresso il cui valore è uguale a quella di carico Z_L (ovvero all'impedenza iterativa d'uscita Z_{ito}).

$$Z_{i} = \frac{V_{i}}{I_{i}} = Z_{iti} = Z_{L}$$

$$Z_{i} = Z_{ito} = Z_{L}$$

$$Z_{i} = Z_{ito} = Z_{L}$$

Poiché $Z_i = \frac{AZ_L + B}{CZ_r + D} = Z_{iti} = Z_L$, sostituendo Z_{iti} al posto di Z_L e risolvendo rispetto a Z_{iti} , si ha:

$$Z_{iti} = \frac{AZ_{iti} + B}{CZ_{iti} + D} \implies CZ_{iti}^2 - (A - D)Z_{iti} - B = 0 \implies Z_{iti} = \frac{A - D \pm \sqrt{(A - D)^2 + 4BC}}{2C}$$

Poiché AD – BC = $1 \Rightarrow BC = AD - 1$, e sostituendo, si ha:

$$\begin{split} Z_{iti} &= \frac{A - D \pm \sqrt{A^2 - 2AD + D^2 + 4AD - 4}}{2C} = \frac{A - D \pm \sqrt{A^2 + 2AD + D^2 - 4}}{2C} = \\ &= \frac{A - D \pm \sqrt{(A + D)^2 - 4}}{2C} \implies Z_{iti} = \frac{A - D + \sqrt{(A + D)^2 - 4}}{2C} \end{split}$$

Si scarta la soluzione negativa.

L'**impedenza iterativa d'uscita Z_{ito}** è quella impedenza d'uscita il cui valore è uguale a quella del generatore sorgente Z_S (ovvero all'impedenza iterativa d'ingresso Z_{iti}).

$$Z_{o} = \frac{V_{o}}{I_{o}} \Big|_{E_{S} = 0} = Z_{ito} = Z_{S}$$

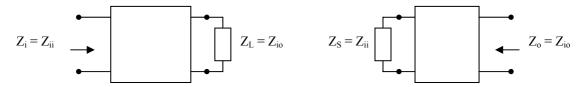
$$Z_{S} = Z_{iti}$$

$$Z_{S} = Z_{iti} = Z_{S}$$

Poiché $Z_o = \frac{DZ_S + B}{CZ_S + A} = Z_{ito} = Z_S$, sostituendo Z_{ito} al posto di Z_S e risolvendo rispetto a Z_{ito} , si ha:

$$Z_{ito} = \frac{DZ_{ito} + B}{CZ_{ito} + A} \quad \Rightarrow \quad CZ_{ito}^2 - (D - A)Z_{ito} - B = 0 \quad \Rightarrow \quad Z_{ito} = \frac{D - A \pm \sqrt{(D - A)^2 + 4BC}}{2C}$$

Poiché AD – BC = 1 \Rightarrow BC = AD – 1, e sostituendo, si ha:


$$\begin{split} Z_{ito} &= \frac{D - A \pm \sqrt{A^2 - 2AD + D^2 + 4AD - 4}}{2C} = \frac{D - A \pm \sqrt{A^2 + 2AD + D^2 - 4}}{2C} = \\ &= \frac{D - A \pm \sqrt{(A + D)^2 - 4}}{2C} \implies Z_{ito} = \frac{D - A + \sqrt{(A + D)^2 - 4}}{2C} \end{split}$$

Si scarta la soluzione negativa.

Impedenze immagine

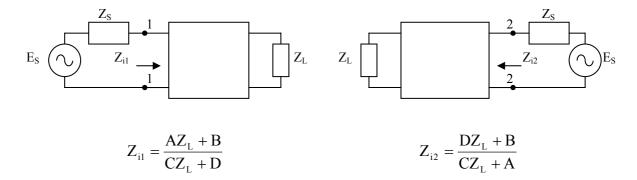
L'**impedenza immagine d'ingresso Z**_{ii} è l'impedenza d'ingresso che si ha quando l'uscita è chiusa sull'impedenza immagine d'uscita Z_{io} .

L'**impedenza immagine d'uscita Z_{io}** è l'impedenza d'uscita che si ha quando l'ingresso è chiuso sull'impedenza immagine d'ingresso Z_{ii} .

Le impedenze immagine sono determinabili tramite misure di impedenze:

$$Z_{ii} = \sqrt{Z_{ia} \cdot Z_{ic}} \qquad \qquad Z_{io} = \sqrt{Z_{oa} \cdot Z_{oc}}$$

dove


- Z_{ia}: impedenza ai morsetti d'ingresso quando i morsetti d'uscita sono aperti
- Zic: impedenza ai morsetti d'ingresso quando i morsetti d'uscita sono in cortocircuito
- Z_{oa}: impedenza ai morsetti d'uscita quando i morsetti d'ingresso sono aperti
- Z_{oc}: impedenza ai morsetti d'uscita quando i morsetti d'ingresso sono in cortocircuito

Tali impedenze si possono determinare dalle espressioni delle impedenze d'ingresso e d'uscita, facendo tendere a zero e all'infinito rispettivamente Z_L e Z_S .

$$\begin{split} Z_{ia} &= \lim_{Z_L \to \infty} Z_i = \lim_{Z_L \to \infty} \frac{AZ_L + B}{CZ_L + D} = \frac{A}{C} \\ Z_{ic} &= \lim_{Z_L \to 0} Z_i = \lim_{Z_L \to 0} \frac{AZ_L + B}{CZ_L + D} = \frac{B}{D} \\ \\ Z_{oa} &= \lim_{Z_S \to \infty} Z_o = \lim_{Z_S \to \infty} \frac{B + Z_S D}{A + Z_S C} = \frac{D}{C} \\ Z_{oc} &= \lim_{Z_S \to 0} Z_o = \lim_{Z_S \to 0} \frac{B + Z_S D}{A + Z_S C} = \frac{B}{A} \\ \\ Z_{ii} &= \sqrt{Z_{ia} \cdot Z_{ic}} = \sqrt{\frac{AB}{CD}} \\ \end{split}$$

Caso di quadripolo simmetrico

I quadripoli simmetrici presentano identità di comportamento nei due sensi; ossia è indifferente utilizzare una coppia di terminali come ingresso e l'altra coppia come uscita; quindi, devono risultare uguali le impedenze d'ingresso nei due casi:

L'uguaglianza tra Z_{i1} e Z_{i2} è vera se risulta A = D.

Se il quadripolo è simmetrico deve risultare A = D. In tale condizione risultano anche uguali le impedenze iterative e le impedenze immagine (AD - BC = 1 \Rightarrow A² = BC - 1):

$$\begin{split} Z_{ii} &= \sqrt{\frac{AB}{CD}} = \sqrt{\frac{B}{C}} = \sqrt{\frac{BD}{AC}} = Z_{io} \\ Z_{iti} &= \frac{A - D + \sqrt{(A + D)^2 - 4}}{2C} = \frac{\sqrt{4A^2 - 4}}{2C} = \sqrt{\frac{4A^2 - 4}{4C^2}} = \sqrt{\frac{A^2 - 1}{C^2}} = \sqrt{\frac{BC + 1 - 1}{C^2}} = \sqrt{\frac{B}{C}} = \\ &= \frac{D - A + \sqrt{(A + D)^2 - 4}}{2C} = \frac{\sqrt{4A^2 - 4}}{2C} = \sqrt{\frac{B}{C}} = Z_{ito} = Z_{ii} = Z_{io} \end{split}$$

Per i quadripoli simmetrici si definisce impedenza caratteristica quella particolare impedenza di carico, $Z_L = Z_C$, che determina una uguale impedenza d'ingresso, $Z_i = Z_C$, e risulta anche uguale alle impedenze iterative e alle impedenze immagine:

$$Z_{C} = Z_{iti} = Z_{ito} = Z_{ii} = Z_{io} = \sqrt{\frac{B}{C}} = \sqrt{Z_{ia} \cdot Z_{ic}} \qquad \qquad Z_{i} = Z_{C}$$

Costante di trasferimento

Si definisce **costante di trasferimenti** γ di un quadripolo il logaritmo naturale del rapporto tra una grandezza in ingresso e la corrispondente grandezza d'uscita:

$$\gamma = ln \frac{I_i}{I_o} \quad \text{ovvero} \quad \gamma = ln \frac{V_i}{V_o} \,, \quad \text{o, equivalentemente} \quad e^{\gamma} = \frac{I_i}{I_o} \quad \text{ovvero} \quad e^{\gamma} = \frac{V_i}{V_o} \,.$$

In particolare, se il quadripolo è simmetrico ed è chiuso sull'impedenza caratteristica Z_C, si ha:

$$\frac{V_i}{I_i} = \frac{V_o}{I_o} = Z_C \implies \frac{V_i}{V_o} = \frac{I_i}{I_o}$$

In questo caso, i due rapporti coincidono e la costante di trasferimento può essere determinata indifferentemente da uno di essi.

Dalla prima delle equazioni generali di funzionamento, si ha:

$$\begin{aligned} V_i &= AV_o + BI_o \frac{V_i}{V_o} = A + B\frac{I_o}{V_o} = A + \frac{B}{Z_C} = A + \frac{B}{\sqrt{\frac{B}{C}}} = A + B\sqrt{\frac{C}{B}} = A + \sqrt{BC} \end{aligned}$$
 Quindi
$$\gamma = ln\frac{V_i}{V_o} = ln \Big(A + \sqrt{BC}\Big)$$

La costante di trasferimento può essere espressa in funzione delle impedenze d'ingresso con uscita a vuoto e in cortocircuito. Si fa comparire un quadrato nell'argomento del logaritmo e si moltiplica e divide per $A - \sqrt{BC}$:

$$\gamma = \frac{1}{2} \ln\left(A + \sqrt{BC}\right)^2 = \frac{1}{2} \ln\left[\left(A + \sqrt{BC}\right)\left(A + \sqrt{BC}\right)\right] = \frac{1}{2} \ln\frac{\left(A + \sqrt{BC}\right)\left(A + \sqrt{BC}\right)\left(A - \sqrt{BC}\right)}{A - \sqrt{BC}} = \frac{1}{2} \ln\frac{\left(A + \sqrt{BC}\right)\left(A^2 - BC\right)}{A - \sqrt{BC}}$$

Poiché il quadripolo è chiuso sulla sua impedenza caratteristica, $A^2 - BC = AD - BC = 1$, si ha:

$$\lambda = \frac{1}{2} ln \frac{A + \sqrt{BC}}{A - \sqrt{BC}} = \frac{1}{2} ln \frac{1 + \sqrt{\frac{BC}{A^2}}}{1 - \sqrt{\frac{BC}{A^2}}} = \frac{1}{2} ln \frac{1 + \sqrt{\frac{B}{A} \cdot \frac{C}{A}}}{1 - \sqrt{\frac{B}{A} \cdot \frac{C}{A}}} = \frac{1}{2} ln \frac{1 + \sqrt{\frac{Z_{ic}}{Z_{ia}}}}{1 - \sqrt{\frac{Z_{ic}}{Z_{ia}}}} \qquad oppure \qquad e^{2\gamma} = \frac{1 + \sqrt{\frac{Z_{ic}}{Z_{ia}}}}{1 - \sqrt{\frac{Z_{ic}}{Z_{ia}}}}$$

La costante di trasferimento è una funzione complessa esprimibile dalla relazione $\gamma = \alpha + j\beta$.

 β , parte immaginaria, tiene conto dello sfasamento tra le grandezze omogenee d'ingresso e d'uscita, e prende il nome di **costante di fase**.

 α , parte reale, tiene conto del rapporto tra i due moduli delle grandezze di ingresso e d'uscita, e prende il nome di **costante di attenuazione**. Essa vale:

$$\alpha = \left| \frac{V_i}{V_o} \right| = \left| \frac{I_i}{I_o} \right| = \frac{1}{2} \ln \frac{1 + \sqrt{\frac{Z_{ic}}{Z_{ia}}}}{1 - \sqrt{\frac{Z_{ic}}{Z_{ia}}}}$$

L'unità di misura della costante di attenuazione è chiamata Neper (Np). Spesso viene usato il logaritmo decimale, definendo la costante di trasmissione come

$$\gamma = 20 \log \frac{I_i}{I_o}$$
 ovvero $\gamma = 20 \log \frac{V_i}{V_o}$

In tale caso, l'unità di misura della costante di trasmissione è il decibel (dB).

Il passaggio tra neper e decibel deriva direttamente dalla conversione tra logaritmi a base diversa:

$$20\log_{10} x = 20\log_{e} x \cdot 20\log_{10} e = 8,68\log_{e} x$$
, e per x = e, si ha: $1Np = 8,68dB$.

Relazione tra parametri Z e parametri di trasmissione

Dalle equazioni del modello a parametri Z si ricavano V_i e I_i in funzione di V_o e I_o:

$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} & \Rightarrow & V_{i} = \frac{Z_{11}}{Z_{21}}V_{o} - \frac{Z_{11}Z_{22}}{Z_{21}}I_{o} + Z_{12}I_{o} = \frac{Z_{11}}{Z_{21}}V_{o} - \frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} & \Rightarrow & I_{i} = \frac{1}{Z_{21}}V_{o} - \frac{Z_{22}}{Z_{21}}I_{o} \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} V_{i} = \frac{Z_{11}}{Z_{21}} V_{o} + \frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}} (-I_{o}) \\ I_{i} = \frac{1}{Z_{21}} V_{o} + \frac{Z_{22}}{Z_{21}} (-I_{o}) \end{cases}$$

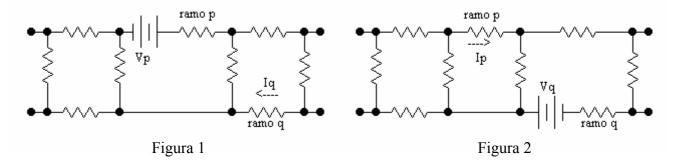
Il segno meno che compare davanti alla corrente i_0 tiene conto del fatto che tale corrente nel modello a parametri Z è entrante nei terminali d'uscita, mentre nel modello a parametri di trasmissione è uscente dai terminali d'uscita.

Dal confronto con le equazioni del modello a parametri di trasmissione, si ha:

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow A = \frac{Z_{11}}{Z_{21}} ; B = \frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}} ; C = \frac{1}{Z_{21}} ; D = \frac{Z_{22}}{Z_{21}}$$

TABELLE RIASSUNTIVE

Definizione dei parametri

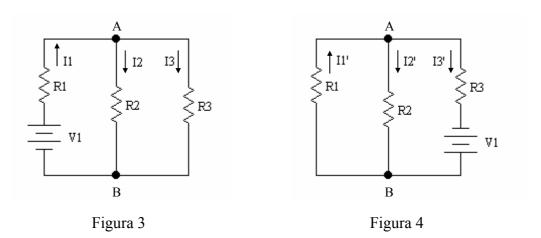

Condizioni di misura	Parametri Z (impedenze)	Parametri Y (ammettenze)	Parametri h (ibridi)	Parametri di trasmissione
Ingresso aperto	$Z_{12} = \frac{V_i}{I_o} \bigg _{I_i=0}$	(animettenze)	$h_{12} = \frac{V_i}{V_o}\bigg _{I_i=0}$	ti asimssione
	$Z_{22} = \frac{V_o}{I_o}\bigg _{I_i=0}$		$h_{22} = \frac{I_o}{V_o}\bigg _{I_i=0}$	
Ingresso in cortocircuito		$Y_{12} = \frac{I_i}{V_o} \bigg _{V_i = 0}$		
		$Y_{22} = \frac{I_o}{V_o} \Big _{V_i=0}$		
Uscita aperta	$Z_{11} = \frac{V_i}{I_i} \bigg _{I_0 = 0}$			$A = \frac{V_o}{V_i} \bigg _{I_o = 0}$
	$Z_{21} = \frac{V_o}{I_i} \bigg _{I_o=0}$			$C = \frac{I_i}{V_o} \Big _{I_o = 0}$
Uscita in cortocircuito		$Y_{11} = \frac{I_i}{V_i} \bigg _{V_o = 0}$	$h_{11} = \frac{V_i}{I_i} \bigg _{V_o = 0}$	$B = \frac{V_i}{I_o} \bigg _{V_o = 0}$
		$Y_{21} = \frac{I_o}{V_i} \bigg _{V_o = 0}$	$h_{21} = \frac{I_o}{I_i} \bigg _{V_o = 0}$	$D = \frac{I_i}{I_o} \bigg _{V_o = 0}$

Calcolo dei parametri $Z_i, Z_o, A_o, A_v, \alpha, \beta, A_{vt}$

Parametro	Parametri Z	Parametri Y	Parametri h	Parametri di trasmissione		
$\mathbf{Z_{i}}$	$Z_{11} - \frac{Z_{12}Z_{21}}{Z_L + Z_{22}}$	$\begin{array}{ c c c }\hline & 1 \\ \hline Y_{11} - \frac{Y_{12}Y_{21}Z_L}{1 + Y_{22}Z_L} \end{array}$	$h_{11} - \frac{h_{12}h_{21}Z_L}{1 + h_{22}Z_L}$	$\frac{AZ_L + B}{CZ_L + D}$		
Z _o	$Z_{22} - \frac{Z_{12}Z_{21}}{Z_{S} + Z_{11}}$	$\frac{1}{Y_{22} - \frac{Y_{12}Y_{21}Z_{S}}{1 + Y_{11}Z_{S}}}$	$\frac{1}{h_{22} - \frac{h_{12}h_{21}}{h_{11} + Z_S}}$	$\frac{B + Z_S D}{A + Z_S C}$		
A _o	$\frac{Z_{21}}{Z_{11}}$	$-\frac{Y_{21}}{Y_{22}}$	$\frac{1}{\mathbf{h}_{12} - \frac{\mathbf{h}_{11}\mathbf{h}_{21}}{\mathbf{h}_{22}}}$	$\frac{1}{A}$		
$\mathbf{A}_{\mathbf{v}}$	$\frac{Z_{L}Z_{21}}{Z_{11}(Z_{L}+Z_{22})-Z_{12}Z_{21}}$	$-\frac{Y_{21}Z_{L}}{1+Y_{22}Z_{L}}$	$\begin{array}{ c c }\hline & 1 \\ \hline h_{12} - \frac{h_{11}(1 + h_{22}Z_L)}{h_{21}Z_L} \end{array}$	$\frac{Z_L}{AZ_L + B}$		
α	$\frac{Z_{i}}{Z_{S} + Z_{i}}$	$\frac{Z_{i}}{Z_{S} + Z_{i}}$	$\frac{Z_{i}}{Z_{S} + Z_{i}}$	$\frac{Z_{i}}{Z_{S} + Z_{i}}$		
β	$\frac{Z_L}{Z_o + Z_L}$	$\frac{Z_L}{Z_o + Z_L}$	$\frac{Z_L}{Z_o + Z_L}$	$\frac{Z_L}{Z_o + Z_L}$		
$\mathbf{A}_{ ext{vt}}$	αA_v	αA_v	αA_v			

PRINCIPIO DI RECIPROCITÀ

In una rete elettrica passiva qualsiasi una forza elettromotrice V_p che agisce in un ramo, ad esempio nel ramo p-esimo, produce in un altro ramo, ad esempio in quello q-esimo, una corrente I_q (Fig. 1).


Il **principio di reciprocità** assicura che tolta la V_p si fa agire una forza elettromotrice V_q nel ramo q-esimo (Fig. 2), essa provocherà in quello p-esimo una corrente I_p il cui valore è legato a quello che aveva precedentemente la corrente I_q dalla seguente relazione:

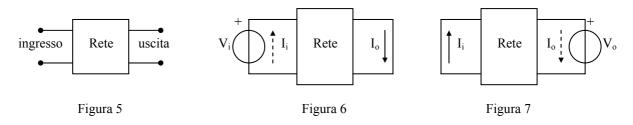
$$\frac{I_p}{I_q} = \frac{V_q}{V_p}$$

Per poter stabilire il verso della corrente I_p dovuta alla forza elettromotrice V_q agente nel ramo q-esimo, occorre conoscere il verso della corrente I_q ed applicare la seguente regola: il verso della corrente I_p coincide con il verso della forza elettromotrice V_p (cioè dal – al + internamente), quando quest'ultima era presente nel ramo p-esimo, se però la forza elettromotrice V_q è stata fatta agire nel ramo q-esimo in modo tale che la precedente corrente I_q coinciderebbe con il verso di detta forza elettromotrice V_q (Fig. 1 e 2). Qualora non sia verificata quest'ultima condizione il verso della corrente I_p sarà contrario a quello su specificato.

Se la rete elettrica è attiva, quanto detto risulta valido a proposito degli incrementi subiti dalla corrente.

Esempio: Il regime elettrico della rete di Fig. 3 è noto: $R_1 = 2\Omega$; $R_2 = 50\Omega$; $R_3 = 100\Omega$; $V_1 = 106V$; $I_1 = 3A$; $I_2 = 2A$; $I_3 = 1$.

Se si porta il generatore V_1 ad agire nel ramo con la resistenza R_3 , come riportato in Fig. 4, calcolare la variazione della corrente I_1 .

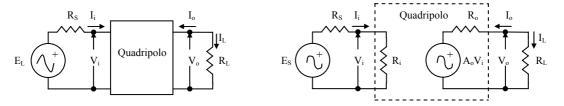

Soluzione: Applicando il principio di reciprocità con la regola data, si ha: la nuova corrente in R_1 ha lo stesso verso della corrente I_1 (cioè dal – al + del generatore V_1 quando era presente nel primo ramo) e valore uguale al valore della corrente I_3 che si aveva sulla resistenza R_3 prima dello spostamento dal generatore. La variazione è dunque di 2A.

$$\frac{I_1'}{I_3} = \frac{V_1}{V_1} = 1 \implies I_1' = I_3 = 1A$$

Come verifica di quanto detto si calcola la corrente I₁' col principio di Millman:

$$I_{1}' = \frac{V_{AB}}{R_{1}} = \frac{\frac{V_{1}}{R_{3}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}} \cdot \frac{1}{R_{1}} = \frac{\frac{106}{100}}{\frac{1}{2} + \frac{1}{50} + \frac{1}{100}} \cdot \frac{1}{2} = 1A$$

Esempio: Una rete lineare passiva ha due coppie di terminali, una coppia come ingresso, l'altra come uscita. quando l' ingresso è alimentato dalla tensione V_i l'uscita risulta in cortocircuito (Fig. 5) e quando l' ingresso risulta in cortocircuito l'uscita è alimentata dalla tensione V_o (Fig. 7). Si deve determinare in quale rapporto stanno le due correnti di cortocircuito i cui versi devono essere quelli riportati nelle Fig. 6 e 7.


Soluzione: Ingresso e uscita della rete possono essere considerati entrambi in corto circuito, per cui:

$$\frac{I_i}{I_o} = -\frac{V_o}{V_i}$$

Il segno meno è dovuto al fatto che la forza elettromotrice V_o è discorde col verso che aveva in tale ramo la corrente I_o quando vi circolava (tale corrente è stata indicata tratteggiata).

PRIMA VERIFICA DEL CIRCUITO EQUIVALENTE DI UN QUADRIPOLO RESISTIVO (LINEARE), CON SCHEMATIZZAZIONE DELL'INGRESSO COME CARICO E DELL'USCITA COME GENERATORE DI TENSIONE

Un quadripolo lineare viene visto dalla sorgente di segnale, dai morsetti d'ingresso, come una impedenza; dal carico, dai morsetti d'uscita, come un generatore di segnale:

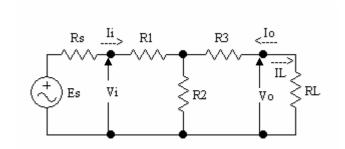
La sorgente di segnale mantiene una differenza di potenziale ed eroga corrente ai morsetti d'ingresso, ossia eroga potenza, e vede il quadripolo come un carico. Tale carico equivale ad una resistenza (impedenza) definita come:

$$R_{i} = \frac{V_{i}}{I_{i}}$$

I terminali d'uscita mantengono una differenza di potenziale ed erogano corrente al carico, ossia erogano potenza; si comportano da generatore. Applicando il teorema di Thèvenin (o di Norton) ai terminali d'uscita si ottiene il generatore equivalente che schematizza l'uscita stessa.

La forza elettromotrice del generatore equivalente, che deve dipendere dalla tensione V_i d'ingresso e dagli elementi costituenti il quadripolo, è uguale alla tensione a vuoto misurata o calcolata ai morsetti d'uscita aperti:

$$A_0 V_i = V_{00}$$

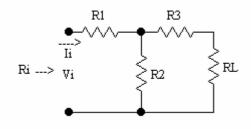

dove V_{oo} è la tensione d'uscita a vuoto.

La resistenza (impedenza) R_o da porre in serie al generatore equivalente (resistenza d'uscita) è la resistenza vista dai morsetti d'uscita aperti una volta eliminati tutti i generatori indipendenti (avere cortocircuitato la sorgente di segnale E_S). per definizione:

$$R_o = \frac{V_o}{I_o} \begin{vmatrix} E_s = 0 \\ uscita & aperta \end{vmatrix}$$

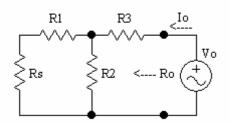
Si verificherà la correttezza del circuito equivalente di un quadripolo resistivo, evidenziando che il circuito equivalente del quadripolo dipende dal carico R_L e non dipende dall'ampiezza del segnale d'ingresso.

Circuito del quadripolo

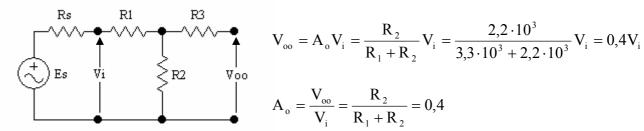


$$R_1 = 3.3k\Omega$$
 ; $R_2 = 2.2k\Omega$; $R_3 = 4.7k\Omega$;

$$R_S = 0.47k\Omega$$
 ; $R_L = 6.8k\Omega$

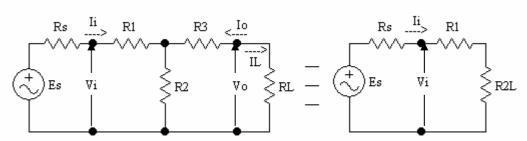

Calcolo del circuito equivalente

Resistenza d'ingresso


$$R_{i} \xrightarrow{\text{Ii}} R_{2} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} = 3,3 \cdot 10^{3} + \frac{2,2 \cdot 10^{3}(4,7 \cdot 10^{3} + 6,8 \cdot 10^{3})}{2,2 \cdot 10^{3} + 4,7 \cdot 10^{3} + 6,8 \cdot 10^{3}} = 5,147 \text{k}\Omega$$

Resistenza d'uscita

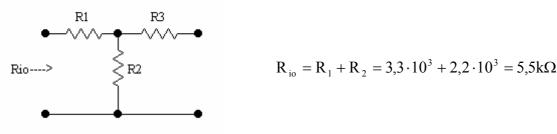
$$R_{o} = \frac{V_{o}}{I_{o}} = R_{3} + \frac{R_{2}(R_{1} + R_{S})}{R_{2} + R_{1} + R_{S}} = 4.7 \cdot 10^{3} + \frac{2.2 \cdot 10^{3}(3.3 \cdot 10^{3} + 0.47 \cdot 10^{3})}{2.2 \cdot 10^{3} + 3.3 \cdot 10^{3} + 0.47 \cdot 10^{3}} = 6.089 \text{k}\Omega$$


Generatore equivalente e funzione di trasferimento a vuoto

$$V_{oo} = A_o V_i = \frac{R_2}{R_1 + R_2} V_i = \frac{2,2 \cdot 10^3}{3,3 \cdot 10^3 + 2,2 \cdot 10^3} V_i = 0,4V_i$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{R_2}{R_1 + R_2} = 0.4$$

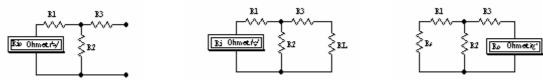
Funzione di trasferimento



$$R_{2L} = \frac{R_2(R_3 + R_L)}{R_2 + R_3 + R_L} = \frac{2.2 \cdot 10^3 (4.7 \cdot 10^3 + 6.8 \cdot 10^3)}{2.2 \cdot 10^3 + 4.7 \cdot 10^3 + 6.8 \cdot 10^3} = 1.847 k\Omega$$

$$V_{R2} = \frac{R_{2L}}{R_1 + R_{2L}} V_i \implies V_o = \frac{R_L}{R_3 + R_L} V_{R2} = \frac{R_L}{R_3 + R_L} \cdot \frac{R_{2L}}{R_1 + R_{2L}} V_i \implies$$

$$\Rightarrow A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{3} + R_{L}} \cdot \frac{R_{2L}}{R_{1} + R_{2L}} = \frac{6.8 \cdot 10^{3}}{4.7 \cdot 10^{3} + 6.8 \cdot 10^{3}} \cdot \frac{1.847 \cdot 10^{3}}{3.3 \cdot 10^{3} + 1.847 \cdot 10^{3}} = 0.212$$


Resistenza d'ingresso senza carico (uscita aperta)

Verranno effettuate due serie di misure, una senza il carico (uscita aperta), una con il carico (R_L collegato).

Procedimento di verifica

- 1. Si monta il circuito senza collegare il generatore, la resistenza R_S e la resistenza R_L e si misura la resistenza d'ingresso con uscita aperta R_{io} , inserendo il multimetro, utilizzato come ohmetro, tra i terminali d'ingresso.
- 2. Si collega la resistenza R_L e si misura la resistenza d'ingresso R_i.

- 3. Si collega R_S, si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o.
- 4. Senza R_L, si collega il generatore e lo si regola a 3V.
- 5. Si misurano le tensioni V_i , V_{R1} , V_{oo} e, utilizzando i valori misurati, si calcolano:

$$I_{i} = \frac{V_{R1}}{R_{1}}$$
 ; $R_{io} = \frac{V_{i}}{I_{i}}$; $A_{o} = \frac{V_{oo}}{V_{i}}$

6. Si collega R_L e si misurano le tensioni V_i, V_{R1}, V_o e, utilizzando i valori misurati, si calcolano:

$$I_i = \frac{V_{R1}}{R_1} \qquad ; \qquad A_v = \frac{V_o}{V_i}$$

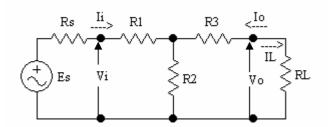
- 7. Si regola il generatore, in successione, a 5V, 8V, 10V, e si ripetono i punti 5 e 6.
- 8. Si tabulano i dati.

Valori misurati

Misure con l'ohmetro

 $R_{io} = 5.51 k\Omega$; $R_i = 5.15 k\Omega$; $R_o = 6.07 k\Omega$

Calcolati $R_{io} = 5.5k\Omega$; $R_i = 5.147k\Omega$; $R_o = 6.089k\Omega$


Misura con il voltmetro

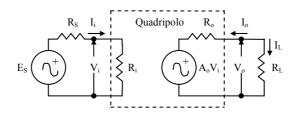
	$\mathbf{R_L} = \infty$						$R_L = 6.8k\Omega$					
Volt		Volt		mA	kΩ	adim	Volt m		mA	kΩ	adim	
$\mathbf{E_{S}}$	Vi	V_{R1}	Voo	I _i	Rio	A _o	V _i	V_{R1}	Vo	I _i	R _i	$\mathbf{A}_{\mathbf{v}}$
3	2,776	1,646	1,118	0,499	5,543	0,404	2,753	1,754	0,593	0,531	5,184	0,215
5	4,607	2,743	1,863	0,831	5,544	0,404	4,586	2,916	0,988	0,884	5,188	0,215
8	7,374	4,390	2,986	1,330	5,544	0,405	7,335	4.674	1,581	1,416	5,180	0,215
10	9,215	5,485	3,727	1,662	5,544	0,404	9,166	5,840	1,977	1,770	5,187	0,215
	Valori calcolati			5,5	0,4	Valori calcolati			5,147	0,212		

Valutazione dati sperimentali

I valori sperimentali ben si accordano con quelli calcolati.

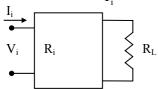
SECONDA VERIFICA DEL CIRCUITO EQUIVALENTE DI UN QUADRIPOLO RESISTIVO (LINEARE), CON SCHEMATIZZAZIONE DELL'INGRESSO COME CARICO E DELL'USCITA COME GENERATORE DI TENSIONE

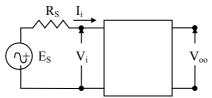
 $R_1=2,2k\Omega \ ; \ R_2=3,3k\Omega \ ; \ R_3=4,7k\Omega$ $R_S=1k\Omega \quad ; \ R_L=3,9k\Omega \ ; \ E_S=5V$

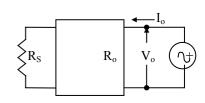

La verifica del quadripolo consiste nel misurare le tensioni e le correnti d'ingresso e d'uscita nelle diverse condizioni e determinare, da queste, applicando le loro definizioni, la resistenza d'ingresso R_i, la resistenza d'uscita R_o, la funzione di trasferimento a vuoto A_o.

Al fine di evidenziare l'influenza della resistenza di sorgente e della resistenza del carico sui parametri del circuito equivalente, si ripetono le misure con valori di R_L maggiore e minore tenendo fisso il valore di R_S; di seguito, si ripetono le misure con valori di R_S maggiore e minore tenendo fisso il valore di R_L.

Si riportano i dati misurati in una tabella insieme ai dati calcolati per un immediato confronto ed una comoda interpretazione dei risultati.

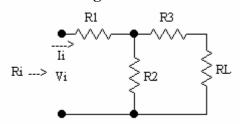

- Gli altri valori usati per R_L sono: $2,2k\Omega$ e $5,6k\Omega$.
- Gli altri valori usati per R_S sono: $0.47k\Omega$ e $2.2k\Omega$.


Il circuito equivalente di un quadripolo è il seguente:



Il generatore di sorgente mantiene tra i morsetti d'ingresso la differenza di potenziale V_i ed eroga la corrente I_i (eroga potenza al quadripolo), ossia vede una resistenza il cui valore è dato dal rapporto V_i/I_i, per quanto riguarda la sorgente, il quadripolo, visto dai terminali d'ingresso, equivale ad una

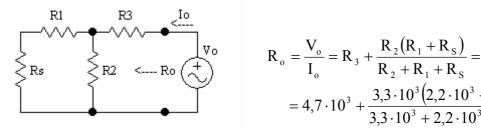
resistenza $R_i = \frac{V_i}{I}$, detta resistenza d'ingresso.


Il carico R_L ai due terminali d'uscita terminali d'uscita tra i quali viene mantenuta la differenza di potenziale V_o ed erogata la corrente I_o (da essi viene erogata potenza al carico), ossia, a tutti gli effetti, l'uscita del quadripolo equivale ad un generatore. Applicando il teorema di Thèvenin ai terminali d'uscita, l'uscita del quadripolo risulterà schematizzata da un generatore ideale di tensione la cui forza elettromotrice è uguale alla tensione a vuoto dell'uscita V₀₀, con in serie la resistenza Ro, che è la resistenza vista dai terminali d'uscita aperti una volta eliminati i generatori

indipendenti. Dalla legge di Ohm, si ha: $R_o = \frac{V_o}{I_o} \begin{vmatrix} E_s = 0 \\ uscita \\ aperta \end{vmatrix}$, detta resistenza d'uscita.

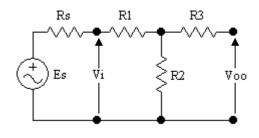
 $A_o = \frac{V_{oo}}{V}$ è la funzione di trasferimento a vuoto del quadripolo.

Calcolo dei parametri del circuito equivalente del quadripolo con $R_S = 1k\Omega$ e $R_L = 3.9k\Omega$


Resistenza d'ingresso

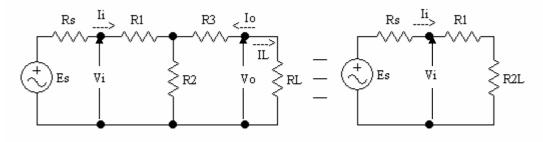
$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} =$$

$$= 2.2 \cdot 10^{3} + \frac{3.3 \cdot 10^{3} (4.7 \cdot 10^{3} + 3.9 \cdot 10^{3})}{3.3 \cdot 10^{3} + 4.7 \cdot 10^{3} + 3.9 \cdot 10^{3}} = 4.585k\Omega$$


Resistenza d'uscita

$$R_o = \frac{V_o}{I_o} = R_3 + \frac{R_2(R_1 + R_S)}{R_2 + R_1 + R_S} =$$

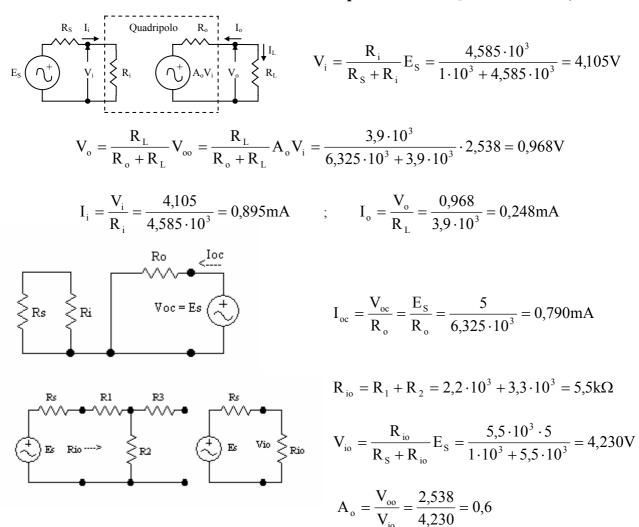
$$= 4.7 \cdot 10^3 + \frac{3.3 \cdot 10^3 (2.2 \cdot 10^3 + 1 \cdot 10^3)}{3.3 \cdot 10^3 + 2.2 \cdot 10^3 + 1 \cdot 10^3} = 6.325 k\Omega$$


Generatore equivalente e funzione di trasferimento a vuoto

$$V_{oo} = A_{o}V_{i} = \frac{R_{2}}{R_{s} + R_{1} + R_{2}} E_{s} = \frac{3,3 \cdot 10^{3}}{1 \cdot 10^{3} + 2,2 \cdot 10^{3} + 3,3 \cdot 10^{3}} \cdot 5 = 2,538V$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{R_2}{R_1 + R_2} = \frac{3.3 \cdot 10^3}{2.2 \cdot 10^3 + 3.3 \cdot 10^3} = 0.6$$

Funzione di trasferimento



$$R_{2L} = \frac{R_2(R_3 + R_L)}{R_2 + R_3 + R_L} = \frac{3.3 \cdot 10^3 (4.7 \cdot 10^3 + 3.9 \cdot 10^3)}{3.3 \cdot 10^3 + 4.7 \cdot 10^3 + 3.9 \cdot 10^3} = 2.385 \text{k}\Omega$$

$$V_{R2} = \frac{R_{2L}}{R_1 + R_{2L}} V_i \implies V_0 = \frac{R_L}{R_3 + R_L} V_{R2} = \frac{R_L}{R_3 + R_L} \cdot \frac{R_{2L}}{R_1 + R_{2L}} V_i \implies$$

$$\Rightarrow A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{3} + R_{L}} \cdot \frac{R_{2L}}{R_{1} + R_{2L}} = \frac{3.9 \cdot 10^{3}}{4.7 \cdot 10^{3} + 3.9 \cdot 10^{3}} \cdot \frac{2.385 \cdot 10^{3}}{2.2 \cdot 10^{3} + 2.385 \cdot 10^{3}} = 0.236$$

Calcolo delle correnti e delle tensioni dal circuito equivalente con $R_S = 1k\Omega$ e $R_L = 3.9k\Omega$

La variazione di R_L influisce sulla resistenza d'ingresso R_i . Un suo aumento provoca una aumento della resistenza d'ingresso; aumenta l'ampiezza del segnale trasferito dalla sorgente al quadripolo e, quindi, aumenta l'ampiezza del segnale d'uscita. Una diminuzione di R_L provoca una diminuzione di R_i , di V_i e di V_o .

La variazione di R_S influisce sulla resistenza d'uscita R_o . Un suo aumento provoca una aumento della resistenza d'uscita; l'aumento della resistenza d'uscita provoca una diminuzione dell'ampiezza del segnale d'uscita. Una diminuzione di R_S provoca una diminuzione di R_o e un aumento di V_o .

R_S e R_L non influiscono sul valore di A₀, che dipende solo dagli elementi costituenti il quadripolo.

Calcolo dei parametri del circuito equivalente del quadripolo con $R_S = 1k\Omega$ e $R_L = 2.2k\Omega$

Resistenza d'ingresso

$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} = 2.2 \cdot 10^{3} + \frac{3.3 \cdot 10^{3}(4.7 \cdot 10^{3} + 2.2 \cdot 10^{3})}{3.3 \cdot 10^{3} + 4.7 \cdot 10^{3} + 2.2 \cdot 10^{3}} = 4.432 \text{k}\Omega$$

$$R_{io} = R_1 + R_2 = 5.5k\Omega$$

$$R_0 = 6.325 k\Omega$$

$$V_{00} = A_0 V_1 = 2,538V$$

Funzione di trasferimento a vuoto

$$A_0 = 0.6$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o} = \frac{2.2 \cdot 10^{3}}{6.325 \cdot 10^{3} + 2.2 \cdot 10^{3}} \cdot 0.6 = 0.155$$

Calcolo delle correnti e delle tensioni dal circuito equivalente con $R_S=1k\Omega$ e $R_L=2,2k\Omega$

$$V_i = \frac{R_i}{R_s + R_i} E_s = \frac{4,432 \cdot 10^3}{1 \cdot 10^3 + 4,432 \cdot 10^3} = 4,079V$$

$$V_o = \frac{R_L}{R_o + R_L} V_{oo} = \frac{2,2 \cdot 10^3}{6.325 \cdot 10^3 + 2.2 \cdot 10^3} \cdot 2,538 = 0,655V$$

$$I_i = \frac{V_i}{R_i} = \frac{4,079}{4,432 \cdot 10^3} = 0,920 \text{mA}$$
 ; $I_o = \frac{V_o}{R_I} = \frac{0,655}{2,2 \cdot 10^3} = 0,298 \text{mA}$

$$I_{oC} = \frac{V_{oc}}{R_o} = \frac{5}{6.325 \cdot 10^3} = 0,790 \text{mA} \qquad ; \qquad V_{io} = \frac{R_{io}}{R_s + R_{io}} E_s = \frac{5.5 \cdot 10^3 \cdot 5}{1 \cdot 10^3 + 5.5 \cdot 10^3} = 4,230 \text{V}$$

Calcolo dei parametri del circuito equivalente del quadripolo con R_S = $1k\Omega$ e R_L = $5.6k\Omega$

Resistenza d'ingresso

$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} = 2.2 \cdot 10^{3} + \frac{3.3 \cdot 10^{3}(4.7 \cdot 10^{3} + 5.6 \cdot 10^{3})}{3.3 \cdot 10^{3} + 4.7 \cdot 10^{3} + 5.6 \cdot 10^{3}} = 4,699k\Omega$$

Resistenza d'ingresso

$$R_{io} = R_1 + R_2 = 5.5k\Omega$$

Resistenza d'uscita

$$R_o = 6.325 k\Omega$$

Tensione d'uscita a vuoto

$$V_{00} = A_0 V_1 = 2,538V$$

Funzione di trasferimento a vuoto

$$A_0 = 0.6$$

$$A_v = \frac{V_o}{V_i} = \frac{R_L}{R_o + R_L} A_o = \frac{5.6 \cdot 10^3}{6.325 \cdot 10^3 + 5.6 \cdot 10^3} \cdot 0.6 = 0.281$$

Calcolo delle correnti e delle tensioni dal circuito equivalente con $R_S=1k\Omega$ e $R_L=5.6k\Omega$

$$\begin{split} V_{i} &= \frac{R_{i}}{R_{S} + R_{i}} E_{S} = \frac{4,699 \cdot 10^{3}}{1 \cdot 10^{3} + 4,699 \cdot 10^{3}} = 4,122V \\ V_{o} &= \frac{R_{L}}{R_{o} + R_{L}} V_{oo} = \frac{5,6 \cdot 10^{3}}{6,325 \cdot 10^{3} + 5,6 \cdot 10^{3}} \cdot 2,538 = 1,192V \\ I_{i} &= \frac{V_{i}}{R_{i}} = \frac{4,122}{4,699 \cdot 10^{3}} = 0,877 \text{mA} \qquad ; \qquad I_{o} = \frac{V_{o}}{R_{L}} = \frac{1,192}{5,6 \cdot 10^{3}} = 0,213 \text{mA} \\ I_{oC} &= \frac{V_{oc}}{R_{o}} = \frac{5}{6,325 \cdot 10^{3}} = 0,790 \text{mA} \qquad ; \qquad V_{io} = \frac{R_{io}}{R_{S} + R_{io}} E_{S} = \frac{5,5 \cdot 10^{3} \cdot 5}{1 \cdot 10^{3} + 5,5 \cdot 10^{3}} = 4,230V \end{split}$$

Calcolo dei parametri del circuito equivalente del quadripolo con $R_{\rm S}$ = 0,47k Ω e $R_{\rm L}$ = 3,9k Ω

Resistenza d'ingresso

$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} = 2.2 \cdot 10^{3} + \frac{3.3 \cdot 10^{3}(4.7 \cdot 10^{3} + 3.9 \cdot 10^{3})}{3.3 \cdot 10^{3} + 4.7 \cdot 10^{3} + 3.9 \cdot 10^{3}} = 4.585 k\Omega$$

Resistenza d'ingresso

$$R_{io} = R_1 + R_2 = 5.5k\Omega$$

Resistenza d'uscita

$$R_{o} = \frac{V_{o}}{I_{o}} = R_{3} + \frac{R_{2}(R_{1} + R_{S})}{R_{2} + R_{1} + R_{S}} = 4.7 \cdot 10^{3} + \frac{3.3 \cdot 10^{3}(2.2 \cdot 10^{3} + 0.47 \cdot 10^{3})}{3.3 \cdot 10^{3} + 2.2 \cdot 10^{3} + 0.47 \cdot 10^{3}} = 6.176k\Omega$$

Tensione d'uscita a vuoto

$$V_{oo} = A_o V_i = \frac{R_2}{R_S + R_1 + R_2} E_S = \frac{3.3 \cdot 10^3}{0.47 \cdot 10^3 + 2.2 \cdot 10^3 + 3.3 \cdot 10^3} \cdot 5 = 2,764V$$

Funzione di trasferimento a vuoto

$$A_0 = 0.6$$

Funzione di trasferimento

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o} = \frac{3.9 \cdot 10^{3}}{6.176 \cdot 10^{3} + 3.9 \cdot 10^{3}} \cdot 0.6 = 0.232$$

Calcolo delle correnti e delle tensioni dal circuito equivalente con $R_S = 0.47 k\Omega$ e $R_L = 3.9 k\Omega$

$$V_i = \frac{R_i}{R_S + R_i} E_S = \frac{4,585 \cdot 10^3}{0,47 \cdot 10^3 + 4,585 \cdot 10^3} = 4,535V$$

$$V_o = \frac{R_L}{R_o + R_L} V_{oo} = \frac{3.9 \cdot 10^3}{6.176 \cdot 10^3 + 3.9 \cdot 10^3} \cdot 2,764 = 1,070V$$

$$I_i = \frac{V_i}{R_i} = \frac{4,535}{4,585 \cdot 10^3} = 0,989 \text{mA}$$
 ; $I_o = \frac{V_o}{R_L} = \frac{1,070}{3,9 \cdot 10^3} = 0,274 \text{mA}$

$$I_{oC} = \frac{V_{oc}}{R_o} = \frac{5}{6,176 \cdot 10^3} = 0,809 \text{mA} \qquad ; \qquad V_{io} = \frac{R_{io}}{R_S + R_{io}} E_S = \frac{5,5 \cdot 10^3 \cdot 5}{0,47 \cdot 10^3 + 5,5 \cdot 10^3} = 4,606 \text{V}$$

Calcolo dei parametri del circuito equivalente del quadripolo con $R_S=2,2k\Omega$ e $R_L=3,9k\Omega$

Resistenza d'ingresso

$$R_i = \frac{V_i}{I_i} = 4,585k\Omega$$

Resistenza d'ingresso

$$R_{io} = R_1 + R_2 = 5.5k\Omega$$

Resistenza d'uscita

$$R_o = \frac{V_o}{I_o} = R_3 + \frac{R_2(R_1 + R_S)}{R_2 + R_1 + R_S} = 4.7 \cdot 10^3 + \frac{3.3 \cdot 10^3 (2.2 \cdot 10^3 + 2.2 \cdot 10^3)}{3.3 \cdot 10^3 + 2.2 \cdot 10^3 + 2.2 \cdot 10^3} = 6.586 k\Omega$$

Tensione d'uscita a vuoto

$$V_{oo} = A_o V_i = \frac{R_2}{R_s + R_1 + R_2} E_s = \frac{3.3 \cdot 10^3}{2.2 \cdot 10^3 + 2.2 \cdot 10^3 + 3.3 \cdot 10^3} \cdot 5 = 2.143 V$$

Funzione di trasferimento a vuoto

$$A_0 = 0.6$$

Funzione di trasferimento

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o} = \frac{3.9 \cdot 10^{3}}{6.586 \cdot 10^{3} + 3.9 \cdot 10^{3}} \cdot 0.6 = 0.223$$

Calcolo delle correnti e delle tensioni dal circuito equivalente con $R_S = 2.2k\Omega$ e $R_L = 3.9k\Omega$

$$\begin{split} V_{i} &= \frac{R_{i}}{R_{s} + R_{i}} E_{s} = \frac{4,585 \cdot 10^{3}}{2,2 \cdot 10^{3} + 4,585 \cdot 10^{3}} = 3,379V \\ V_{o} &= \frac{R_{L}}{R_{o} + R_{L}} V_{oo} = \frac{3,9 \cdot 10^{3}}{6,586 \cdot 10^{3} + 3,9 \cdot 10^{3}} \cdot 2,143 = 0,797V \\ I_{i} &= \frac{V_{i}}{R_{i}} = \frac{3,379}{4,585 \cdot 10^{3}} = 0,737 \text{mA} \qquad ; \qquad I_{o} = \frac{V_{o}}{R_{L}} = \frac{0,797}{3,9 \cdot 10^{3}} = 0,204 \text{mA} \\ I_{oC} &= \frac{V_{oc}}{R} = \frac{5}{6,586 \cdot 10^{3}} = 0,759 \text{mA} \qquad ; \qquad V_{io} = \frac{R_{io}}{R_{o} + R_{c}} E_{s} = \frac{5,5 \cdot 10^{3} \cdot 5}{2,2 \cdot 10^{3} + 5,5 \cdot 10^{3}} = 3,571V \end{split}$$

Procedimento di misura

Si utilizzano un alimentatore variabile e quattro multimetri 4½ digit, due come voltmetri e due come amperometri.

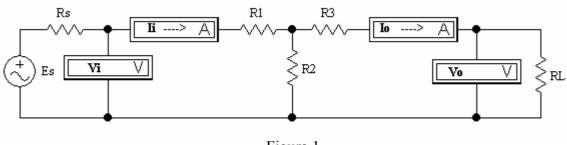


Figura 1

- 1. Si monta il circuito su basetta di bread-board come in figura, dopo aver regolato l'alimentatore a 5V
- 2. Si rilevano i valori di V_i, V_o, I_i, I_o.
- 3. Si toglie la resistenza di carico R_L e si rilevano i valori di V_{io} e V_{oo}.
- 4. Si scollega l'alimentatore, si collega l'estremo libero di R_S a R₂, si invertono i puntali degli amperometri e si collega l'alimentatore ai terminali d'uscita, come in Fig. 2.

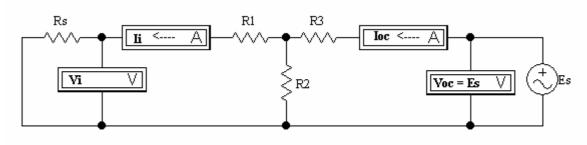


Figura 2

- 5. Si rileva il valore di I_{oc}.
- 6. Utilizzando i valori misurati, si calcolano: $R_i = \frac{V_i}{I_i}$; $R_o = \frac{V_{oc}}{I_{oc}} = \frac{E_S}{I_{oc}}$; $A_o = \frac{V_{oo}}{V_i}$; $A_v = \frac{V_o}{V_i}$
- 7. Si riportano i dati misurati in una tabella in cui vengono riportati anche i valori calcolati.
- 8. Si ritorna la circuito di Fig. 1 utilizzando per R_L il valore $2,2k\Omega$ e si ripetono i punti dal 2 al 4.
- 9. Si ripete il punto 8 utilizzando per R_L il valore 5,6 $k\Omega$.
- 10. Si ritorna al circuito di Fig. 1 utilizzando per R_S il valore $0,47k\Omega$ e si ripetono i punti dal 2 al 7.
- 11. Si ripete il punto 10 utilizzando per R_S il valore 2,2k Ω .
- 12. Si confrontano i dati misurati con quelli calcolati e si evidenziano le variazioni dei parametri e delle tensioni al variare di R_S ed R_L .

Tabulazione dei dati

					Mist	urati		Calcolati					
k	Ω	V	olt		V	olt			V	olt			
$R_{ m L}$	$\mathbf{R}_{\mathbf{S}}$	$\mathbf{E_{S}}$	V _{oc}	Vi	Vo	Vio	Voo	Vi	Vo	Vio	V _{oo}		
3,9	1	5	5	4,108	0,920	4,228	2,518	4,105	0,968	4,230	2,538		
2,2	1	5	5	4,078	0,654	4,228	2,518	4,079	0,655	4,230	2,538		
5,6	1	5	5	4,121	1,189	4,228	2,518	4,122	1,192	4,230	2,538		
3,9	0,47	5	5	4,535	1,063	4,605	2,743	4,535	1,070	4,606	2,764		
3,9	2,2	5	5	3,371	0,790	3,561	2,121	3,379	0,797	3,571	2,143		

					Misurati		Calcolati				
k	Ω	V	olt		mA			mA			
$R_{\rm L}$	$\mathbf{R}_{\mathbf{S}}$	$\mathbf{E}_{\mathbf{S}}$	Voc	I_{i}	Io	I_{oc}	I_i	I_{o}	I_{oc}		
3,9	1	5	5	0,887	0,236	0,792	0,895	0,241	0,790		
2,2	1	5	5	0,917	0,295	0,792	0,920	0,298	0,790		
5,6	1	5	5	0,874	0,210	0,792	0,877	0,213	0,790		
3,9	0,47	5	5	0,986	0,272	0,811	0,989	0,274	0,809		
3,9	2,2	5	5	0,733	0,202	0,760	0,737	0,204	0,759		

					Misu	urati		Calcolati					
k	Ω	Volt		k	Ω	Ad	lim	k	Ω	Adim			
$R_{ m L}$	$\mathbf{R}_{\mathbf{S}}$	$\mathbf{E}_{\mathbf{S}}$	V_{oc}	$\mathbf{R_{i}}$	Ro	A _o	$\mathbf{A_{v}}$	$\mathbf{R_{i}}$	Ro	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$		
3,9	1	5	5	4,631	6,313	0,596	0,224	4,585	6,325	0,6	0,236		
2,2	1	5	5	4,447	6,313	0,596	0,160	4,432	6,325	0,6	0,155		
5,6	1	5	5	4,715	6,313	0,596	0,288	4,699	6,325	0,6	0,281		
3,9	0,47	5	5	4,599	6,165	0,596	0,234	4,585	6,176	0,6	0,232		
3,9	2,2	5	5	4,599	6,579	0,596	0,234	4,535	6,586	0,6	0,223		

 R_L resistenza di carico ; R_S resistenza di sorgente ; E_S generatore di sorgente

 V_i tensione d'ingresso ; V_o tensione d'uscita ; I_i corrente d'ingresso ; I_i corrente d'uscita

 V_{io} , V_{oo} tensioni d'ingresso e d'uscita con uscita a vuoto

 $\mathbf{V_{oc}}$ tensione d'uscita prodotta da un generatore dopo avere eliminato tutti i generatori indipendenti e il carico R_L

 I_{oc} corrente d'uscita con uscita aperta (senza R_L e $V_{oc} = E_S$) ed eliminati i generatori indipendenti

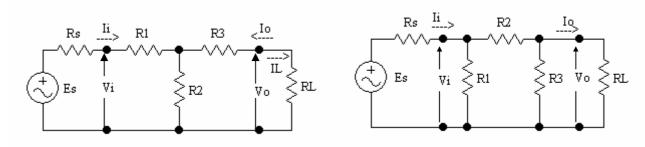
 R_i resistenza d'ingresso ; R_o resistenza d'uscita ; $V_{oo} = A_o V_i$ f.e.m. del generatore equivalente

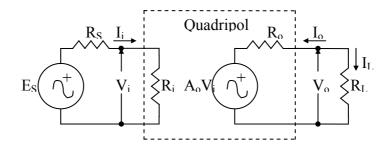
 $A_o = \frac{V_{oo}}{V_i}$ funzione di trasferimento con uscita aperta ; $A_v = \frac{V_o}{V_i}$ funzione di trasferimento

Commento dei dati

I valori misurati sono in ottimo accordo con quelli calcolati.

Dalla tabella si evidenzia come una variazione della resistenza di carico R_L , iniziale di 3,9k Ω , influisca sulla resistenza d'ingresso R_i e sulla tensione d'uscita V_o . Con $R_L = 2,2k\Omega$ (diminuzione di R_L) R_i e V_o diminuiscono. Con $R_L = 5,6k\Omega$ (aumento di R_L) R_i e V_o aumentano.


Analogamente, come una variazione della resistenza di sorgente R_S , iniziale di $1k\Omega$, influisca sulla resistenza d'uscita R_o e sulla tensione d'uscita V_o . Con $R_S = 0.47k\Omega$ (diminuzione di R_S) R_o diminuisce e R_o aumenta. Con $R_S = 2.2k\Omega$ (aumento di R_S) R_o aumenta e R_o diminuisce.


Il valore di A_o (funzione di trasferimento con uscita aperta) è fisso a 0,596 (teorico 0,6), ossia è indipendente sia da R_L sia da R_S , dipendendo solo dai componenti costituenti il quadripolo.

 A_v (funzione di trasferimento) dipende sia da R_s sia da R_L .

DETERMINAZIONE DEL QUADRIPOLO EQUIVALENTE DI DUE QUADRIPOLI RESISTIVI SIMMETRICI E VERIFICA DELLA SUA VALIDITÀ. VERIFICA DELL'INFLUENZA DELLA TENSIONE DEL GENERATORE SORGENTE E DEL CARICO.

Schema dei circuiti

Sigle e valori dei componenti

I° circuito:
$$R_1 = R_3 = 2.7k\Omega$$
; $R_2 = 4.7k\Omega$; II° circuito: $R_1 = R_3 = 4.7k\Omega$; $R_2 = 2.7k\Omega$

Strumenti e apparecchiature utilizzate

Alimentatore stabilizzato variabile; multimetro digitale 4½ digit.

Richiami teorici

Il quadripolo lineare può essere schematizzato in ingresso da una resistenza e in uscita da un generatore di tensione o di corrente (generatore equivalente e resistenza equivalente).

La **resistenza d'ingresso** è data da: $R_i = \frac{V_i}{I_i}$

Il **generatore d'uscita** è dato da:

Il **generatore ideale** dipende dalla tensione d'ingresso: $A_oV_i = V_{oo}$

- $-A_o = \frac{V_{oo}}{V_i}$ è la funzione di trasferimento con uscita aperta (a vuoto) del quadripolo.
- $-R_{o} = \frac{V_{o}}{I_{o}} \begin{vmatrix} E_{s} = 0 \\ uscita & aperta \end{vmatrix}$ è la **resistenza d'uscita**, con uscita a vuoto, una volta annullati i

43

generatori indipendenti (aperti quelli di corrente e cortocircuitati quelli di tensione).

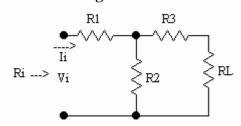
Altri parametri caratteristici di un quadripolo

$$A_{v} = \frac{V_{o}}{V_{c}}$$
 funzione di trasferimento

$$A_{vt} = \frac{V_o}{E_S}$$
 funzione di trasferimento che tiene conto anche dell'influenza della sorgente

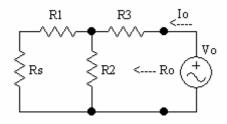
$$\alpha = \frac{V_i}{E_s} = \frac{R_i}{R_s + R_i}$$
 attenuazione d'ingresso

$$\beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L}$$
 attenuazione d'uscita


$$A_{vt} = \frac{V_o}{E_S} \cdot \frac{V_i}{V_i} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v$$

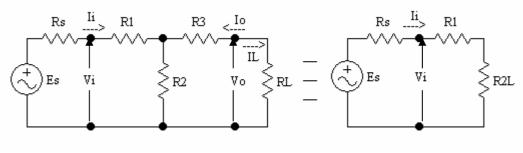
$$A_v = \frac{V_o}{V_i} \cdot \frac{V_{oo}}{V_{oo}} = \frac{V_o}{V_{oo}} \cdot \frac{V_{oo}}{V_i} = \beta A_o$$

$$\Rightarrow A_{vt} = \alpha A_v = \alpha A_o \beta$$


Determinazione del quadripolo equivalente a T fissati i valori di R_S e di $R_{\rm L}$

Resistenza d'ingresso

$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}}$$


Resistenza d'uscita

$$R_o = \frac{V_o}{I_o} = R_3 + \frac{R_2(R_1 + R_S)}{R_2 + R_1 + R_S}$$

Generatore equivalente e funzione di trasferimento a vuoto

Funzione di trasferimento

$$R_{2L} = \frac{R_2(R_3 + R_L)}{R_2 + R_3 + R_L} = R_i - R_1$$
; $V_{R2} = \frac{R_{2L}}{R_1 + R_{2L}} V_i \implies$

$$\Rightarrow V_{o} = \frac{R_{L}}{R_{3} + R_{L}} V_{R2} = \frac{R_{L}}{R_{3} + R_{L}} \cdot \frac{R_{2L}}{R_{1} + R_{2L}} V_{i} \Rightarrow A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{3} + R_{L}} \cdot \frac{R_{2L}}{R_{1} + R_{2L}} V_{i}$$

Oppure

$$V_o = \frac{R_L}{R_o + R_L} A_o V_i \implies A_v = \frac{V_o}{V_i} = \frac{R_L}{R_o + R_L} A_o$$

Attenuazione d'ingresso α e attenuazione d'uscita β

$$\alpha = \frac{V_i}{E_S} = \frac{R_i}{R_S + R_i}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L}$$

Funzione di trasferimento che tiene conto anche dell'influenza della sorgente

$$\begin{vmatrix} A_{vt} = \frac{V_o}{E_S} \cdot \frac{V_i}{V_i} = \frac{V_i}{E_S} \cdot \frac{V_o}{V_i} = \alpha A_v \\ A_v = \frac{V_o}{V_i} \cdot \frac{V_{oo}}{V_{oo}} = \frac{V_o}{V_{oo}} \cdot \frac{V_{oo}}{V_i} = \beta A_o \end{vmatrix} \Rightarrow A_{vt} = \alpha A_v = \alpha A_o \beta = \frac{R_i}{R_S + R_i} A_o \frac{R_L}{R_o + R_L}$$

Caso con $R_S = 0$

$$\begin{split} R_{i} &= \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} \quad ; \quad R_{o} = \frac{V_{o}}{I_{o}} = R_{3} + \frac{R_{2}R_{1}}{R_{2} + R_{1}} \quad ; \quad V_{i} = E_{S} \\ \\ V_{oo} &= A_{o}V_{i} = \frac{R_{2}}{R_{1} + R_{2}}V_{i} \quad ; \quad A_{o} = \frac{V_{oo}}{V_{i}} = \frac{V_{oo}}{E_{S}} = \frac{R_{2}}{R_{1} + R_{2}} \\ \\ \alpha &= \frac{V_{i}}{E_{S}} = \frac{R_{i}}{R_{S} + R_{i}} = 1 \quad ; \quad \beta = \frac{V_{o}}{V_{oo}} = \frac{R_{L}}{R_{o} + R_{L}} \quad ; \quad A_{vt} = \frac{V_{o}}{E_{S}} = \frac{V_{o}}{V_{i}} = A_{v} = \beta A_{o} = \frac{R_{L}}{R_{o} + R_{L}} A_{o} \end{split}$$

Variazione dei parametri del quadripolo a T al variare di R_S

$$R_i = \frac{V_i}{I_i} = R_1 + \frac{R_2(R_3 + R_L)}{R_2 + R_2 + R_L}$$
 rimane invariata

$$R_o = \frac{V_o}{I_o} = R_3 + \frac{R_2(R_1 + R_S)}{R_2 + R_1 + R_S} \qquad \text{varia} \quad \begin{cases} R_S + \implies R_o + \\ R_S - \implies R_o - \end{cases}$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{R_2}{R_1 + R_2}$$
 rimane invariato

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o}$$
 varia
$$\begin{pmatrix} R_{S} + \Rightarrow R_{o} + \Rightarrow A_{v} - \\ R_{S} - \Rightarrow R_{o} - \Rightarrow A_{v} + \end{pmatrix}$$

$$\alpha = \frac{V_i}{E_S} = \frac{R_i}{R_S + R_i}$$
 varia
$$\begin{cases} R_S + \Rightarrow \alpha - \\ R_S - \Rightarrow \alpha + \end{cases}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L}$$
 varia
$$\begin{cases} R_s + \Rightarrow R_o + \Rightarrow \beta - \\ R_s - \Rightarrow R_o - \Rightarrow \beta + \end{cases}$$

$$A_{vt} = \alpha A_o \beta = \frac{R_i}{R_S + R_i} A_o \frac{R_L}{R_o + R_L} \quad \text{varia} \quad \begin{cases} R_S + \Rightarrow \alpha, \beta - \Rightarrow A_{vt} - \\ R_S - \Rightarrow \alpha, \beta + \Rightarrow A_{vt} + \end{cases}$$

<u>Riassumendo</u>: variano R_0 , A_v , α , β , A_{vt} , e rimangono invariati R_i , A_0 .

Variazione dei parametri del quadripolo a T al variare di R_L

$$R_{i} = \frac{V_{i}}{I_{i}} = R_{1} + \frac{R_{2}(R_{3} + R_{L})}{R_{2} + R_{3} + R_{L}} \qquad \text{varia} \quad \begin{cases} R_{L} + \implies R_{i} + \\ R_{L} - \implies R_{i} - \end{cases}$$

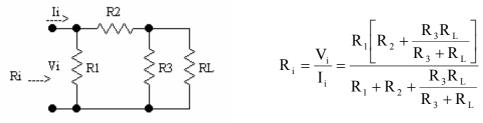
$$R_o = \frac{V_o}{I_o} = R_3 + \frac{R_2(R_1 + R_S)}{R_2 + R_1 + R_S}$$
 rimane invariata

$$A_o = \frac{V_{oo}}{V_i} = \frac{R_2}{R_1 + R_2}$$
 rimane invariato

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o}$$
 varia
$$\begin{pmatrix} R_{L} + \Rightarrow A_{v} + \\ R_{L} - \Rightarrow A_{v} - \end{pmatrix}$$

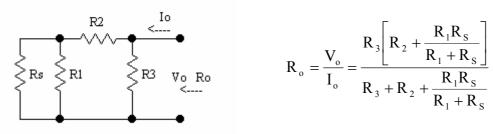
$$\alpha = \frac{V_i}{E_s} = \frac{R_i}{R_s + R_i} \qquad \text{varia} \quad \begin{cases} R_L + \Rightarrow R_i + \Rightarrow \alpha + \\ R_L - \Rightarrow R_i - \Rightarrow \alpha - \end{cases}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L} \qquad \text{varia} \quad \begin{cases} R_L + \Rightarrow \beta + \\ R_L - \Rightarrow \beta - \end{cases}$$

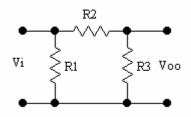

$$A_{vt} = \alpha A_o \beta = \frac{R_i}{R_S + R_i} A_o \frac{R_L}{R_o + R_L} \qquad \text{varia} \quad \begin{cases} R_L + \Rightarrow \alpha, \beta + \Rightarrow A_{vt} + \\ R_L - \Rightarrow \alpha, \beta - \Rightarrow A_{vt} - \end{cases}$$

<u>Riassumendo</u>: variano R_i , A_v , α , β , A_{vt} , e rimangono invariati R_o , A_o .

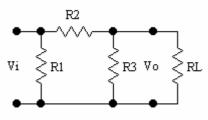
Se R_S e R_L variano entrambe, l'unico parametro che rimane inalterato è A₀.


Determinazione del quadripolo equivalente a Π fissati i valori di R_S e di R_L

Resistenza d'ingresso


$$R_{i} = \frac{V_{i}}{I_{i}} = \frac{R_{1} \left[R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}} \right]}{R_{1} + R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}}}$$

Resistenza d'uscita



$$R_{o} = \frac{V_{o}}{I_{o}} = \frac{R_{3} \left[R_{2} + \frac{R_{1}R_{S}}{R_{1} + R_{S}} \right]}{R_{3} + R_{2} + \frac{R_{1}R_{S}}{R_{1} + R_{S}}}$$

Generatore equivalente e funzione di trasferimento a vuoto

Funzione di trasferimento

$$\alpha = \frac{V_i}{E_S} = \frac{R_i}{R_S + R_i} \qquad ; \qquad \beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L}$$

$$A_v = \frac{V_o}{V_i} = \beta A_o = \frac{R_L}{R_o + R_L} A_o \qquad ; \qquad A_{vt} = \alpha A_v = \alpha A_o \beta = \frac{R_i}{R_S + R_i} A_o \frac{R_L}{R_o + R_L}$$

Variazione dei parametri del quadripolo a Π al variare di R_S

$$\begin{split} R_{i} &= \frac{V_{i}}{I_{i}} = \frac{R_{1} \left[R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}} \right]}{R_{1} + R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}}} \quad \text{rimane invariata} \\ \\ R_{o} &= \frac{V_{o}}{I_{o}} = \frac{R_{3} \left[R_{2} + \frac{R_{1}R_{S}}{R_{1} + R_{S}} \right]}{R_{3} + R_{2} + \frac{R_{1}R_{S}}{R_{1} + R_{S}}} \quad \text{varia} \quad \left\langle \begin{matrix} R_{S} + & \Rightarrow & R_{o} + \\ R_{S} - & \Rightarrow & R_{o} - \end{matrix} \right. \\ \\ A_{o} &= \frac{V_{oo}}{V_{i}} = \frac{R_{2}}{R_{1} + R_{2}} \quad \text{rimane invariato} \\ \\ A_{v} &= \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o} \quad \text{varia} \quad \left\langle \begin{matrix} R_{S} + & \Rightarrow & R_{o} + & \Rightarrow & A_{v} - \\ R_{S} - & \Rightarrow & R_{o} - & \Rightarrow & A_{v} + \end{matrix} \right. \\ \\ \alpha &= \frac{V_{i}}{E_{S}} = \frac{R_{i}}{R_{S} + R_{i}} \quad \text{varia} \quad \left\langle \begin{matrix} R_{S} + & \Rightarrow & \alpha_{o} + & \Rightarrow & A_{v} - \\ R_{S} - & \Rightarrow & \alpha_{o} - & \Rightarrow & A_{v} + \end{matrix} \right. \\ \\ \beta &= \frac{V_{o}}{V_{oo}} = \frac{R_{L}}{R_{o} + R_{L}} \quad \text{varia} \quad \left\langle \begin{matrix} R_{S} + & \Rightarrow & \alpha_{o} + & \Rightarrow & \beta_{o} - \\ R_{S} - & \Rightarrow & \alpha_{o} + & \Rightarrow & \beta_{o} - \end{matrix} \right. \\ \\ R_{S} - & \Rightarrow & \alpha_{o} - & \Rightarrow & \beta_{e} + & \Rightarrow & \beta_{o} - \Rightarrow & \beta_{e} + \end{matrix} \\ \\ A_{vt} &= \alpha A_{o} \beta &= \frac{R_{i}}{R_{S} + R_{i}} A_{o} \frac{R_{L}}{R_{o} + R_{L}} \quad \text{varia} \quad \left\langle \begin{matrix} R_{S} + & \Rightarrow & \alpha_{o} + & \Rightarrow & \beta_{o} - \\ R_{S} - & \Rightarrow & \alpha_{o} - & \Rightarrow & \beta_{e} + \end{matrix} \right. \\ \\ R_{S} - & \Rightarrow & \alpha_{o} \beta - & \Rightarrow & A_{vt} - \\ R_{S} - & \Rightarrow & \alpha_{o} \beta + & \Rightarrow & A_{vt} - \end{matrix} \\ \\ R_{S} - & \Rightarrow & \alpha_{o} \beta + & \Rightarrow & A_{vt} - \end{matrix} \\ \\ R_{S} - & \Rightarrow & \alpha_{o} \beta + & \Rightarrow & A_{vt} - \end{matrix} \\ \\ R_{S} - & \Rightarrow & \alpha_{o} \beta + & \Rightarrow & A_{vt} - \end{matrix} \\ \\ R_{S} - & \Rightarrow & \alpha_{o} \beta + & \Rightarrow & A_{vt} - \end{matrix}$$

Riassumendo: variano R_o , A_v , α , β , A_{vt} , e rimangono invariati R_i , A_o .

Variazione dei parametri del quadripolo a Π al variare di R_L

$$R_{i} = \frac{V_{i}}{I_{i}} = \frac{R_{1} \left[R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}} \right]}{R_{1} + R_{2} + \frac{R_{3}R_{L}}{R_{3} + R_{L}}} \quad \text{varia} \quad \begin{cases} R_{L} + \implies R_{i} + \\ R_{L} - \implies R_{i} - \end{cases}$$

$$R_o = \frac{V_o}{I_o} = \frac{R_3 \left[R_2 + \frac{R_1 R_S}{R_1 + R_S} \right]}{R_3 + R_2 + \frac{R_1 R_S}{R_1 + R_S}}$$
 rimane invariata

$$A_o = \frac{V_{oo}}{V_c} = \frac{R_2}{R_1 + R_2}$$
 rimane invariato

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{o} + R_{L}} A_{o}$$
 varia
$$\begin{pmatrix} R_{L} + \Rightarrow A_{v} + \\ R_{L} - \Rightarrow A_{v} - \end{pmatrix}$$

$$\alpha = \frac{V_{i}}{E_{S}} = \frac{R_{i}}{R_{S} + R_{i}}$$
 varia
$$\begin{cases} R_{L} + \Rightarrow R_{i} + \Rightarrow \alpha + \\ R_{L} - \Rightarrow R_{i} - \Rightarrow \alpha - \end{cases}$$

$$\beta = \frac{V_o}{V_{oo}} = \frac{R_L}{R_o + R_L} \qquad \text{varia} \quad \begin{cases} R_L + \implies \beta + \\ R_L - \implies \beta - \end{cases}$$

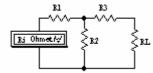
$$A_{vt} = \alpha A_o \beta = \frac{R_i}{R_S + R_i} A_o \frac{R_L}{R_o + R_L} \quad \text{varia} \quad \begin{cases} R_L + \Rightarrow \alpha, \beta + \Rightarrow A_{vt} + \\ R_L - \Rightarrow \alpha, \beta - \Rightarrow A_{vt} - \end{cases}$$

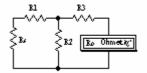
<u>Riassumendo</u>: variano R_i , A_v , α , β , A_{vt} , e rimangono invariati R_o , A_o .

Se R_S e R_L variano entrambe, l'unico parametro che rimane inalterato è A_o.

I valori teorici aspettati nell'esecuzione della verifica vengono calcolati dalle formule su trovate.

Definizione della verifica


La verifica consta nella rilevazione di tre serie di dati:


- a. **prima serie**: con $R_S \cong 0$ e $R_L = 8.2k\Omega$, facendo variare $E_S = 3V$; 5V; 7V; 10V; 12V; 15V, si misurano i parametri del quadripolo equivalente e si dovrà verificare che la variazione di E_S (e quindi di V_i) non ha alcuna influenza su di essi.
- b. **Seconda serie**: con $E_S = 5V$ e $R_L = 8,2k\Omega$, facendo variare $R_S = 0,47k\Omega$; $1k\Omega$; $2,2k\Omega$; $3,3k\Omega$, si dovrà verificare che R_o , A_v , α , β , A_{vt} variano e che R_i , A_o rimangono invariati.
- c. **Terza serie**: con $E_S = 5V$ e $R_L = 0.47k\Omega$, facendo variare $R_L = 3.9k\Omega$; $5.6k\Omega$; $8.2k\Omega$; $12k\Omega$; $22k\Omega$, si dovrà verificare che R_i , A_v , α , β , A_{vt} variano e che R_o , A_o rimangono invariati.

Procedimento di misura

Prima serie ($R_S \cong 0$ e $R_L = 8.2k\Omega$) quadripolo a T

- 1. Si monta il circuito a T senza collegare l'alimentatore e si utilizza la resistenza di carico $R_L = 8.2k\Omega$.
- 2. Si misura la resistenza d'ingresso R_i.

- 3. Si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o.
- 4. Senza R_L, si collega l'alimentatore e lo si regola a 3V.
- 5. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 6. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
 ; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 7. Si ripetono i punti 5 e 6 tarando in successione E_S a 5V; 7V; 10V; 12V; 15V.
- 8. Si tabulano i dati.

Seconda serie ($E_S = 5V e R_L = 8.2k\Omega$) quadripolo a T

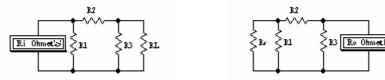
- 9. Si monta il circuito a T senza collegare l'alimentatore; si utilizza la resistenza di carico $R_L = 8.2k\Omega$.
- 10. Si misura la resistenza d'ingresso R_i.
- 11. Si collega una resistenza di sorgente $R_S = 0.47k\Omega$ (1k Ω ; 2,2k Ω ; 3,3k Ω).
- 12. Si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o.
- 13. Senza R_L, si collega l'alimentatore regolato a 5V.
- 14. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 15. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
 ; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 16. Si ripetono i punti da 10 a 15 utilizzando, in successione, per la resistenza di sorgente i valori $R_S = 1k\Omega$; $2,2k\Omega$; $3,3k\Omega$.
- 17. Si tabulano i dati.

Terza serie ($E_S = 5V e R_S = 0.47k\Omega$) quadripolo a T

- 18. Si monta il circuito a T senza collegare l'alimentatore.
- 19. Si utilizza la resistenza di carico $R_L = 8.2k\Omega$ (5.6k Ω ; 8.2k Ω ; 12k Ω ; 22k Ω).
- 20. Si misura la resistenza d'ingresso R_i.


- 21. Si collega la resistenza di sorgente $R_S = 0.47 k\Omega$, si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o .
- 22. Senza R_L, si collega l'alimentatore regolato a 5V.
- 23. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 24. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
 ; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 25. Si ripetono i punti da 19 a 24 utilizzando, in successione, per la resistenza di carico i valori $R_L = 5.6k\Omega$; $8.2k\Omega$; $12k\Omega$; $22k\Omega$.
- 26. Si tabulano i dati.

Prima serie ($R_S \cong 0$ e $R_L = 8.2k\Omega$) quadripolo a Π

- 27. Si monta il circuito a T senza collegare l'alimentatore e si utilizza la resistenza di carico $R_L = 8.2k\Omega$.
- 28. Si misura la resistenza d'ingresso R_i.

- 29. Si collega R_S, si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o.
- 30. Senza R_L, si collega l'alimentatore e lo si regola a 3V.
- 31. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 32. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
 ; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 33. Si ripetono i punti 31 e 32 tarando in successione E_S a 5V; 7V; 10V; 12V; 15V.
- 34. Si tabulano i dati.

Seconda serie ($E_S = 5V$ e $R_L = 8.2k\Omega$)quadripolo a Π

- 35. Si monta il circuito a Π senza collegare l'alimentatore; si utilizza la resistenza di carico $R_L = 8.2k\Omega$.
- 36. Si misura la resistenza d'ingresso R_i.
- 37. Si collega una resistenza di sorgente $R_S = 0.47k\Omega$ (1k Ω ; 2,2k Ω ; 3,3k Ω).
- 38. Si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o.
- 39. Senza R_L, si collega l'alimentatore regolato a 5V.
- 40. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 41. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 42. Si ripetono i punti da 37 a 41 utilizzando, in successione, per la resistenza di sorgente i valori $R_S = 1k\Omega$; $2,2k\Omega$; $3,3k\Omega$.
- 43. Si tabulano i dati.

Terza serie ($E_S = 5V$ e $R_S = 0.47k\Omega$) quadripolo a Π

- 44. Si monta il circuito a Π senza collegare l'alimentatore.
- 45. Si utilizza la resistenza di carico $R_L = 8.2k\Omega$ (5.6k Ω ; 8.2k Ω ; 12k Ω ; 22k Ω).
- 46. Si misura la resistenza d'ingresso R_i.
- 47. Si collega la resistenza di sorgente $R_S = 0,47k\Omega$, si cortocircuita l'ingresso, si toglie R_L e si misura la resistenza d'uscita R_o .
- 48. Senza R_L, si collega l'alimentatore regolato a 5V.
- 49. Si misurano le tensioni V_{io} e V_{oo} e, utilizzando i valori misurati, si calcola: $A_o = \frac{V_{oo}}{V_{io}}$
- 50. Si collega R_L e si misurano le tensioni V_i , V_o , E_S , e, utilizzando i valori misurati, si calcolano:

$$A_{v} = \frac{V_{o}}{V_{i}}$$
 ; $A_{vt} = \frac{V_{o}}{E_{S}}$; $\alpha = \frac{V_{i}}{E_{S}}$; $\beta = \frac{V_{o}}{V_{oo}} = \frac{V_{o}}{A_{o}V_{i}}$

- 51. Si ripetono i punti da 45 a 50 utilizzando, in successione, per la resistenza di carico i valori $R_L = 5.6k\Omega$; $8.2k\Omega$; $12k\Omega$; $22k\Omega$.
- 52. Si tabulano i dati.

Tabulazione dei dati

Quadripolo a T

			Prim	a serie			$R_S \cong 0$ e $R_L = 8.2k\Omega$								
					V	alori mi	surati								
Volt		1	kΩ			V	olt		Adimensionale						
$\mathbf{E_{S}}$	R_{S}	$R_{\rm L}$	$\mathbf{R}_{\mathbf{i}}$	R_o	V _{oo}	V_{io}	V_{i}	$\mathbf{V_o}$	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$	A_{vt}	α	β		
3	0	8,2	5,943	4,375	1,906	3	3	1,242	0,635	0,414	0,414	1	0,652		
5	0	8,2	5,943	4,375	3,175	5	5	2,071	0,635	0,414	0,414	1	0,652		
7	0	8,2	5,943	4,375	4,445	7	7	2,897	0,635	0,414	0,414	1	0,652		
10	0	8,2	5,943	4,375	6,350	10	10	4,141	0,635	0,414	0,414	1	0,652		
12	0	8,2	5,943	4,375	7,619	12	12	4,966	0,635	0,414	0,414	1	0,652		
15	0	8,2	5,943	4,375	9,521	15	15	6,210	0,635	0,414	0,414	1	0,652		
					Va	lori ca	lcolati								
Volt]	kΩ			V	olt			Adi	mension	ale			
$\mathbf{E_{S}}$	R_{S}	$R_{\rm L}$	R _i	Ro	V _{oo}	Vio	Vi	Vo	Ao	A_{v}	A _{vt}	α	β		
3	0	8,2	5,944	4,414	1,905	3	3	1,238	0,635	0,413	0,413	1	0,650		
5	0	8,2	5,944	4,414	3,175	5	5	2,064	0,635	0,413	0,413	1	0,650		
7	0	8,2	5,944	4,414	4,446	7	7	2,890	0,635	0,413	0,413	1	0,650		
10	0	8,2	5,944	4,414	6,351	10	10	4,128	0,635	0,413	0,413	1	0,650		
12	0	8,2	5,944	4,414	7,621	12	12	4,954	0,635	0,413	0,413	1	0,650		
15	0	8,2	5,944	4,414	9,527	15	15	6,193	0,635	0,413	0,413	1	0,650		

			Second	la serie					$E_S = 5V$	e R _L	$= 8.2 k\Omega$	2		
						Valori 1	misurati							
Volt		k	Ω			V	olt Adimensionale							
$\mathbf{E_{S}}$	$\mathbf{R}_{\mathbf{S}}$	\mathbf{R}_{L}	$\mathbf{R}_{\mathbf{i}}$	R_{o}	V _{oo}	V_{io}	V_{i}	Vo	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$	$\mathbf{A}_{\mathbf{vt}}$	α	β	
5	0,47	8,2	5,944	4,554	2,983	4,699	4,633	1,918	0,635	0,414	0,383	0,927	0,643	
5	1	8,2	5,944	4,729	2,795	4,402	4,282	1,772	0,635	0,414	0,354	0,856	0,635	
5	2,2	8,2	5,944	5,064	2,436	3,837	3,637	1,595	0,635	0,414	0,319	0,730	0,618	
5	3,3	8,2	5,944	5,291	2,193	3,453	3,219	1,332	332 O,635 0,414 0,266 0,643 (
						Valori o	calcolati							
Volt		k	Ω			V	olt			Ad	imension	ale		
$\mathbf{E_{S}}$	$\mathbf{R}_{\mathbf{S}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R_{i}}$	$\mathbf{R}_{\mathbf{o}}$	V_{oo}	V_{io}	V_i	$\mathbf{V_o}$	Ao	$\mathbf{A}_{\mathbf{v}}$	A _{vt}	α	β	
5	0,47	8,2	5,983	4,593	2,086	4,701	4,636	1,914	0,635	0,413	0,383	0,927	0,641	
5	1	8,2	5,983	4,770	2,797	4,405	4,284	1,769	0,635	0,413	0,354	0,857	0,632	
5	2,2	8,2	5,983	5,099	2,448	3,854	3,656	1,509	0,635	0,413	0,318	0,731	0,616	
5	3,3	8,2	5,983	5,355	2,196	3,458	3,222	1,330	0,635	0,413	0,266	0,644	0,606	

			Terza	serie			$E_S = 5V$ e $R_S = 0.47k\Omega$								
						Valori 1	nisurati								
Volt		k	Ω			V	olt			Ad	imensior	nale			
$\mathbf{E_{S}}$	R_{S}	$R_{\rm L}$	$\mathbf{R_{i}}$	Ro	V _{oo}	V_{io}	V_{i}	Vo	Ao	$\mathbf{A}_{\mathbf{v}}$	$\mathbf{A}_{\mathbf{vt}}$	α	β		
5	0,47	3,9	5,429	4,553	2,984	4,700	4,602	1,399	0,635	0,291	0,268	0,920	0,461		
5	0,47	5,6	5,659	4,553	2,984	4,700	4,617	1,643	0,635	0,356	0,328	0,923	0,551		
5	0,47	8,2	5,983	4,553	2,984	4,700	4,636	1,914	0,635	0,413	0,383	0,927	0,643		
5	0,47	12	6,220	4,553	2,984	4,700	4,650	2,164	0,635	0,465	0,433	0,930	0,725		
5	0,47	22	6,602	4,553	2,984	4,700	4,669	2,473	0,635	0,530	0,494	0,933	0,929		
						Valori o	calcolati								
Volt		k	Ω			V	olt			Ad	imensior	nale			
$\mathbf{E_{S}}$	R_{S}	$R_{\rm L}$	Ri	Ro	V _{oo}	Vio	Vi	Vo	Ao	A _v	A _{vt}	α	β		
5	0,47	3,9	5,445	4,593	2,986	4,701	4,602	1,371	0,635	0,298	0,274	0,920	0,459		
5	0,47	5,6	5,700	4,593	2,986	4,701	4,619	1,640	0,635	0,355	0,328	0,924	0,549		
5	0,47	8,2	5,983	4,593	2,986	4,701	4,636	1,914	0,635	0,413	0,383	0,927	0,641		
5	0,47	12	6,261	4,593	2,986	4,701	4,651	2,159	0,635	0,464	0,432	0,930	0,723		
5	0,47	22	6,648	4,593	2,986	4,701	4,670	2,470	0,635	0,529	0,494	0,934	0,927		

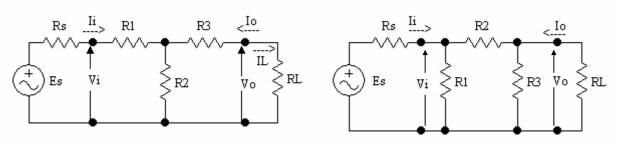
Quadripolo a Π

			Prima	a serie					$R_S \cong 0$	e R _L :	= 8,2kΩ		
	•					Valori 1	nisurati		-		-		
Volt		k	Ω			V	olt		Adimensionale				
$\mathbf{E}_{\mathbf{S}}$	R_{S}	$R_{\rm L}$	R _i	Ro	V _{oo}	Vio	$\mathbf{V_{i}}$	Vo	Ao	$\mathbf{A}_{\mathbf{v}}$	A_{vt}	α	β
3	0	8,2	2,547	1,740	1,900	3	3	1,570	0,633	0,523	0,523	1	0,825
5	0	8,2	2,547	1,740	3,165	5	5	2,617	0,633	0,523	0,523	1	0,825
7	0	8,2	2,547	1,740	4,431	7	7	3,664	0,633	0,523	0,523	1	0,825
10	0	8,2	2,547	1,740	6,330	10	10	5,235	0,633	0,523	0,523	1	0,825
12	0	8,2	2,547	1,740	7,595	12	12	6,282	0,633	0,523	0,523	1	0,825
15	0	8,2	2,547	1,740	9,494	15	15	7,853	0,633	0,523	0,523	1	0,825
						Valori o	alcolati						
Volt		k	Ω			V	olt		Adimensionale				
Es	R_{S}	$R_{\rm L}$	Ri	Ro	V _{oo}	Vio	Vi	Vo	Ao	A _v	A _{vt}	α	β
3	0	8,2	2,573	1,715	1,905	3	3	1,576	0,635	0,525	0,525	1	0,827
5	0	8,2	2,573	1,715	3,175	5	5	2,626	0,635	0,525	0,525	1	0,827
7	0	8,2	2,573	1,715	4,445	7	7	3,677	0,635	0,525	0,525	1	0,827
10	0	8,2	2,573	1,715	6,351	10	10	5,253	0,635	0,525	0,525	1	0,827
12	0	8,2	2,573	1,715	7,621	12	12	6,303	0,635	0,525	0,525	1	0,827
15	0	8,2	2,573	1,715	9,527	15	15	7,879	0,635	0,525	0,525	1	0,827

			Second	la serie					$E_S = 5V$	e R _L	$= 8,2k\Omega$	2	
						Valori 1	nisurati						
Volt	kΩ						folt Adimensionale						
$\mathbf{E}_{\mathbf{S}}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$						V_{i}	$\mathbf{V_o}$	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$	A_{vt}	α	β
5	0,47	8,2	2,547	1,858	2,721	4,298	4,229	2,214	0,633	0,523	0,443	0,846	0,814
5	1	8,2	2,547	1,997	2,336	3,690	3,581	1,874	0,633	0,523	0,375	0,716	0,802
5	2,2	8,2	2,547	2,192	1,794	2,834	2,698	1,412	0,633	0,523	0,282	0,539	0,787
5	3,3	8,2	2,547	2,311	1,462	2,309	2,137	1,137	0,633	0,523	0,227	0,427	0,778
						Valori o	calcolati						
Volt		k	Ω			V	olt			Ad	limensionale		
$\mathbf{E_{S}}$	$\mathbf{R}_{\mathbf{S}}$	\mathbf{R}_{L}	$\mathbf{R}_{\mathbf{i}}$	Ro	V _{oo}	V_{io}	V_{i}	Vo	Ao	$\mathbf{A}_{\mathbf{v}}$	$\mathbf{A}_{\mathbf{vt}}$	α	β
5	0,47	8,2	2,573	1,878	2,728	4,297	4,228	2,220	0,635	0,525	0,444	0,846	0,814
5	1	8,2	2,573	2,014	2,355	3,709	3,600	1,891	0,635	0,525	0,378	0,720	0,803
5	2,2	8,2	2,573	2,217	1,798	2,832	2,695	1,415	0,635	0,525	0,283	0,539	0,788
5	3,3	8,2	2,573	2,328	1,478	2,328	2,190	1,150	0,635	0,525	0,230	0,438	0,778

			Terza	serie]	$E_S = 5V$	e R _S	= 0,47k s	2		
	•					Valori 1	nisurati			-				
Volt		k	Ω			V	olt			Ad	imension	nale		
$\mathbf{E_{S}}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$					V_{io}	V_{i}	Vo	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$	$\mathbf{A}_{ ext{vt}}$	α	β	
5	0,47	3,9	2,360	1,858	2,722	4,300	4,180	1,840	0,633	0,440	0,368	0,836	0,676	
5	0,47	5,6	2,457	1,858	2,722	4,300	4,208	2,040	0,633	0,485	0,408	0,841	0,749	
5	0,47	8,2	2,547	1,858	2,721	4,300	4,229	2,214	0,633	0,529	0,428	0,846	0,813	
5	0,47	12	2,624	1,858	2,723	4,300	4,252	2,327	0,633	0,558	0,471	0,850	0,865	
5	0,47	22	2,771	1,858	2,723	4,300	4,272	2,509	0,633	0,587	0,502	0,854	0,921	
						Valori o	calcolati							
Volt		k	Ω			V	olt	lt Adimensionale						
$\mathbf{E_{S}}$	R_{S}	$R_{\rm L}$	$\mathbf{R}_{\mathbf{i}}$	R_o	Voo	V_{io}	V_{i}	Vo	$\mathbf{A_o}$	$\mathbf{A}_{\mathbf{v}}$	$\mathbf{A}_{ ext{vt}}$	α	β	
5	0,47	3,9	2,382	1,878	2,728	4,297	4,176	1,842	0,635	0,441	0,368	0,835	0,675	
5	0,47	5,6	2,481	1,878	2,728	4,297	4,203	2,044	0,635	0,486	0,409	0,840	0,749	
5	0,47	8,2	2,573	1,878	2,728	4,297	4,228	2,220	0,635	0,525	0,444	0,845	0,814	
5	0,47	12	2,650	1,878	2,728	4,297	4,246	2,359	0,635	0,555	0,472	0,849	0,865	
5	0,47	22	2,740	1,878	2,728	4,297	4,268	2,514	0,635	0,589	0,503	0,853	0,921	

Commento dei dati


I valori misurati sono in ottimo accordo con quelli calcolati. Dalle tabelle si desume che:

- a. **prima serie**: con $R_S \cong 0$ e $R_L = 8,2k\Omega$, facendo variare E_S , tutti i parametri del quadripolo rimangono invariati.
- b. **Seconda serie**: con E_S = 5V e R_L = 8,2k Ω , facendo variare R_S , i parametri R_o , A_v , α , β , A_{vt} variano e R_i , A_o rimangono costanti.
- c. **Terza serie**: con E_S = 5V e R_L = 0,47k Ω , facendo variare R_L , i parametri R_i , A_v , α , β , A_{vt} variano e R_o , A_o rimangono costanti.

VERIFICA DI DUE QUADRIPOLI SIMMETRICI RESISTIVI A T E A Π . DETERMINAZIONE DEI PARAMETRI DEI LORO CIRCUITI EQUIVALENTI A PARAMETRI Z, Y, h, DI TRASMISSIONE. CALCOLO E VERIFICA, PER OGNI CIRCUITO EQUIVALENTE, DI R_i , R_o , α , A_o , A_v , β , A_{vt} .

Per questa verifica si utilizzano i due quadripoli della verifica precedente.

Schema dei circuiti

Sigle e valori dei componenti

$$\mathbf{E_S} = \mathbf{5V}$$
; \mathbf{I}° circuito: $R_1 = R_3 = 2.7k\Omega$; $R_2 = 4.7k\Omega$; \mathbf{II}° circuito: $R_1 = R_3 = 4.7k\Omega$; $R_2 = 2.7k\Omega$

Strumenti e apparecchiature utilizzate

Alimentatore stabilizzato variabile; tre multimetri digitali 4½ digit.

Richiami teorici

Un quadripolo lineare e tempo-invariante può essere schematizzato, indipendentemente dalla sorgente e dal carico, esprimendo due delle grandezze d'ingresso/uscita (V_i, I_i, V_o, I_o) come combinazione lineare delle altre due. A secondo di quali grandezze si scelgono, si otterrà un modello.

- Se si scelgono come variabili dipendenti le tensioni V_i e V_o , si ha il modello a parametri Z (impedenza) o serie, le cui equazioni sono:

$$\begin{cases} V_{i} = Z_{11}I_{i} + Z_{12}I_{o} \\ V_{o} = Z_{21}I_{i} + Z_{22}I_{o} \end{cases}$$

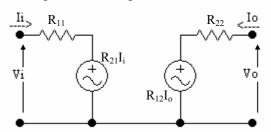
 Se si scelgono come variabili dipendenti le correnti I_i e I_o, si ha il modello a parametri Y (ammettenza) o parallelo, le cui equazioni sono:

$$\begin{cases} I_{i} = Y_{11}V_{i} + Y_{12}V_{o} \\ I_{o} = Y_{21}V_{i} + Y_{22}V_{o} \end{cases}$$

 Se si scelgono come variabili dipendenti la tensione V_i e la corrente I_o, si ha il modello a parametri ibridi, le cui equazioni sono:

$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} \end{cases}$$

 Se si scelgono come variabili dipendenti la tensione V_i e la corrente I_i, si ha il modello a parametri di trasmissione, le cui equazioni sono:

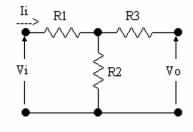

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases}$$

QUADRIPOLO A T SIMMETRICO

Calcolo dei parametri R e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

Poiché il quadripolo è costituito da sole resistenze, al posto dell'impedenza Z si scrive R, resistenza.

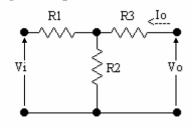
$$\begin{cases} V_{i} = R_{11}I_{i} + R_{12}I_{o} \\ V_{o} = R_{21}I_{i} + R_{22}I_{o} \end{cases}$$



Si determinano i parametri R una volta con uscita a vuoto, che annulla i termini con I_o , e una volta con ingresso a vuoto, che annulla i termini con I_i .

Uscita aperta
$$\Rightarrow I_0 = 0 \Rightarrow \begin{cases} V_i = R_{11}I_i \\ V_0 = R_{21}I_i \end{cases} \Rightarrow R_{11} = \frac{V_i}{I_i} \Big|_{I=0} [\Omega] \quad e \quad R_{21} = \frac{V_0}{I_i} \Big|_{I=0} [\Omega]$$

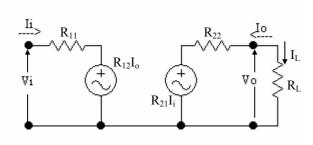
$$\begin{array}{lll} \text{Ingresso aperto} & \Rightarrow & I_i = 0 & \Rightarrow & \begin{cases} V_i = R_{12} I_o \\ V_o = R_{22} I_o \end{cases} \Rightarrow & R_{12} = \frac{V_i}{I_o} \bigg|_{I_i = 0} \left[\Omega \right] & e & R_{22} = \frac{V_o}{I_o} \bigg|_{I_i = 0} \left[\Omega \right] \end{array}$$


Uscita aperta

$$R_{11} = \frac{V_i}{I_i}\Big|_{I=0} = R_1 + R_2 = 2,7 \cdot 10^3 + 4,7 \cdot 10^3 = 7,4k\Omega$$

$$R_{21} = \frac{V_o}{I_i}\Big|_{I=0} = \frac{R_2I_i}{I_i} = R_2 = 4,7k\Omega$$

Ingresso aperto



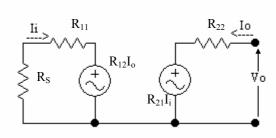
$$R_{12} = \frac{V_i}{I_o}\Big|_{I_i=0} = \frac{R_2 I_o}{I_o} = R_2 = 4,7k\Omega$$

$$R_{22} = \frac{V_o}{I_o}\Big|_{I_i=0} = R_2 + R_3 = 4,7 \cdot 10^3 + 2,7 \cdot 10^3 = 7,4k\Omega$$

Il calcolo dei parametri R_i , R_o , α , A_o , A_v , β , A_{vt} viene fatto per due coppie di valori di resistenze di sorgente e di carico: I^a coppia $R_s = 1k\Omega$ e $R_L = 8.2k\Omega$; II^a coppia $R_s = 0.47k\Omega$ e $R_L = 3.9k\Omega$.

 $\mathbf{R}_{\mathbf{i}}$

$$I_{o} = -\frac{R_{21}I_{i}}{R_{22} + R_{L}}$$


 I^a coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$R_i = 7.4 \cdot 10^3 - \frac{4.7 \cdot 10^3 \cdot 4.7 \cdot 10^3}{7.4 \cdot 10^3 + 8.2 \cdot 10^3} = 5.984 k\Omega$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$R_i = 7.4 \cdot 10^3 - \frac{4.7 \cdot 10^3 \cdot 4.7 \cdot 10^3}{7.4 \cdot 10^3 + 3.9 \cdot 10^3} = 5.445 \text{k}\Omega$$

 R_0

$$I_{i} = -\frac{R_{12}I_{o}}{R_{11} + R_{s}}$$

$$V_o = R_{21}I_i + R_{22}I_o = R_{22}I_o - \frac{R_{12}R_{21}}{R_{11} + R_S}I_o$$

$$R_{o} = \frac{V_{o}}{I_{o}} = R_{22} - \frac{R_{12}R_{21}}{R_{11} + R_{S}}$$

 I^a coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$R_o = 7.4 \cdot 10^3 - \frac{4.7 \cdot 10^3 \cdot 4.7 \cdot 10^3}{7.4 \cdot 10^3 + 1 \cdot 10^3} = 4.770 \text{k}\Omega$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$R_o = 7.4 \cdot 10^3 - \frac{4.7 \cdot 10^3 \cdot 4.7 \cdot 10^3}{7.4 \cdot 10^3 + 0.47 \cdot 10^3} = 4.593 k\Omega$$

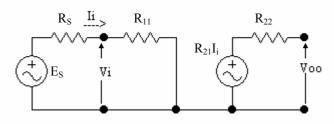
α, β

$$I^a$$
 coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{5,984 \cdot 10^3}{1 \cdot 10^3 + 5,985 \cdot 10^3} = 0,867$$

$$II^a$$
 coppia $R_S = 0.47$ kΩ e $R_L = 3.9$ kΩ:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{5,445 \cdot 10^3}{0,47 \cdot 10^3 + 5,445 \cdot 10^3} = 0,920$$

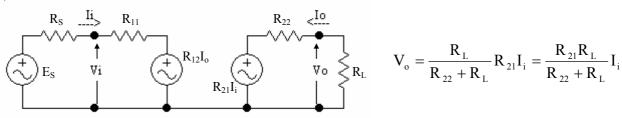

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8,2 \cdot 10^3}{4,770 \cdot 10^3 + 8,2 \cdot 10^3} = 0,632$$

II^a coppia
$$R_S = 0.47$$
kΩ e $R_L = 3.9$ kΩ:

$$\beta = \frac{R_L}{R_0 + R_1} = \frac{3.9 \cdot 10^3}{4.593 \cdot 10^3 + 3.9 \cdot 10^3} = 0.459$$

 A_0


$$V_{i} = R_{11}I_{i}$$
 ; $V_{o} = R_{21}I_{i}$

$$V_{i} = R_{11}I_{i} \quad ; \quad V_{o} = R_{21}I_{i}$$

$$V_{o} = R_{11}I_{i} \quad ; \quad V_{o} = R_{21}I_{i}$$

$$A_{o} = \frac{V_{oo}}{V_{i}} = \frac{R_{21}}{R_{11}} = \frac{4.7 \cdot 10^{3}}{7.4 \cdot 10^{3}} = 0.635$$

 $\mathbf{A}_{\mathbf{v}}$

$$V_{o} = \frac{R_{L}}{R_{22} + R_{L}} R_{21} I_{i} = \frac{R_{21} R_{L}}{R_{22} + R_{L}} I_{i}$$

$$V_{o} = R_{21}I_{i} + R_{22}I_{o} \implies \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} = R_{21}I_{i} + R_{22}I_{o} \implies R_{22}I_{o} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} \implies R_{22}I_{o} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} - R_{21}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_{i} = \frac{R_{21}R_{L}}{R_{22} + R_{L}}I_$$

$$\Rightarrow R_{22}I_o = \frac{R_{21}R_L - R_{21}R_o - R_{21}R_L}{R_{22} + R_L}I_i \quad \Rightarrow \quad R_{22}I_o = \frac{-R_{21}R_{22}}{R_{22} + R_L}I_i \quad \Rightarrow \quad I_o = -\frac{R_{21}}{R_{22} + R_L}I_i$$

$$V_{i} = R_{11}I_{i} + R_{12}I_{o} \implies V_{i} = R_{11}I_{i} - \frac{R_{12}R_{21}}{R_{22} + R_{L}}I_{i} = \frac{R_{11}(R_{22} + R_{L}) - R_{12}R_{21}}{R_{22} + R_{L}}I_{i}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\frac{R_{21}R_{L}}{R_{22} + R_{L}}}{\frac{R_{11}(R_{22} + R_{L}) - R_{12}R_{21}}{R_{22} + R_{L}}} = \frac{R_{21}R_{L}}{R_{11}(R_{22} + R_{L}) - R_{12}R_{21}}$$

 I^a coppia $R_S = 1$ kΩ e $R_L = 8,2$ kΩ:

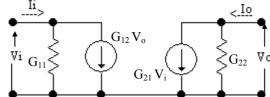
$$A_{v} = \frac{4,7 \cdot 10^{3} \cdot 8,2 \cdot 10^{3}}{7,4 \cdot 10^{3} (8,2 \cdot 10^{3} + 7,4 \cdot 10^{3}) - 4,7 \cdot 10^{3} \cdot 4,7 \cdot 10^{3}} = 0,413$$

$$II^{a} \text{ coppia } R_{S} = 0,47 \text{k}\Omega \text{ e } R_{L} = 3,9 \text{k}\Omega \text{: } A_{v} = \frac{4,7 \cdot 10^{3} \cdot 3,9 \cdot 10^{3}}{7,4 \cdot 10^{3} \left(3,9 \cdot 10^{3} + 7,4 \cdot 10^{3}\right) - 4,7 \cdot 10^{3} \cdot 4,7 \cdot 10^{3}} = 0,298$$

$$\mathbf{A}_{\mathbf{vt}} = \alpha \mathbf{A}_{\mathbf{v}}$$

 I^a coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$A_{vt} = \alpha A_v = 0.857 \cdot 0.413 = 0.354$$

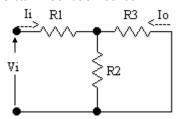

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$A_{vt} = \alpha A_v = 0.920 \cdot 0.298 = 0.274$$

Calcolo dei parametri G e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

Poiché il quadripolo è costituito da sole resistenze, al posto dell'ammettenza Y si scrive G, conduttanza.

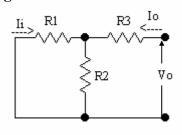
$$\begin{cases} I_{i} = G_{11}V_{i} + G_{12}V_{o} \\ I_{o} = G_{21}V_{i} + G_{22}V_{o} \end{cases}$$



Si determinano i parametri G una volta con uscita in cortocircuito, che annulla i termini con Vo, e una volta con ingresso in cortocircuito, che annulla i termini con Vi.

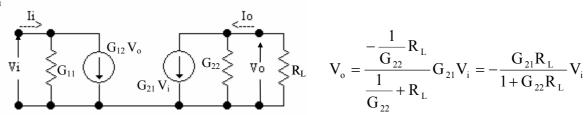
$$\textbf{Uscita in cortocircuito} \ \Rightarrow \ V_o = 0 \ \Rightarrow \ \begin{cases} I_i = G_{11} V_i \\ I_o = G_{21} V_i \end{cases} \ \Rightarrow \ G_{11} = \frac{I_i}{V_i} \bigg|_{V_a = 0} \big[S \big] \ e \ G_{21} = \frac{I_o}{V_i} \bigg|_{V_a = 0} \big[S \big]$$

$$\begin{array}{lll} \textbf{Ingresso in cortocircuito} \ \Rightarrow \ V_i = 0 \ \Rightarrow \ \begin{cases} I_i = Y_{12} V_o \\ I_o = Y_{22} V_o \end{cases} \ \Rightarrow \ G_{12} = \frac{I_i}{V_o} \bigg|_{V_i = 0} \big[S \big] \ e \ G_{22} = \frac{I_o}{V_o} \bigg|_{V_i = 0} \big[S \big] \end{array}$$


Uscita in cortocircuito

$$G_{11} = \frac{I_{i}}{V_{i}}\Big|_{V_{o}=0} = \frac{1}{R_{1} + \frac{R_{2}R_{3}}{R_{2} + R_{3}}} = \frac{1}{2,7 \cdot 10^{3} + \frac{4,7 \cdot 10^{3} \cdot 2,7 \cdot 10^{3}}{4,7 \cdot 10^{3} + 2,7 \cdot 10^{3}}} = 0,226 \text{m}\Omega^{-1}$$

$$\begin{aligned} G_{21} &= \frac{I_o}{V_i} \bigg|_{V_o = 0} = \frac{-\frac{R_2}{R_2 + R_3} I_i}{\left(R_1 + \frac{R_2 R_3}{R_2 + R_3}\right) I_i} = -\frac{R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3} = \\ &= -\frac{4,7 \cdot 10^3}{2,7 \cdot 10^3 \cdot 4,7 \cdot 10^3 + 2,7 \cdot 10^3 \cdot 2,7 \cdot 10^3 + 4,7 \cdot 10^3 \cdot 2,7 \cdot 10^3} = -0,144 \text{m}\Omega^{-1} \end{aligned}$$

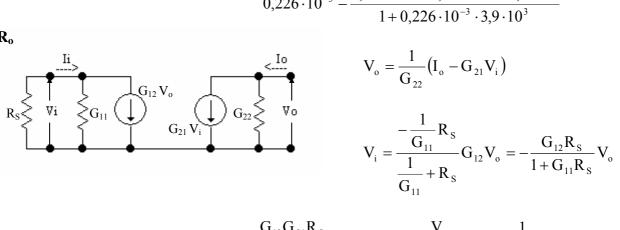

Ingresso in cortocircuito

$$G_{22} = \frac{I_o}{V_o}\Big|_{V_i=0} = \frac{1}{R_3 + \frac{R_1 R_2}{R_1 + R_2}} = \frac{1}{2,7 \cdot 10^3 + \frac{2,7 \cdot 10^3 \cdot 4,7 \cdot 10^3}{2,7 \cdot 10^3 + 4,7 \cdot 10^3}} = 0,226 \text{m}\Omega^{-1}$$

$$\begin{aligned} G_{12} &= \frac{I_{i}}{V_{o}} \bigg|_{V_{i}=0} = \frac{-\frac{R_{2}}{R_{1} + R_{2}} I_{o}}{\left(R_{3} + \frac{R_{1}R_{2}}{R_{1} + R_{2}}\right) I_{i}} = -\frac{R_{2}}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}} = \\ &= -\frac{4,7 \cdot 10^{3}}{2,7 \cdot 10^{3} \cdot 4,7 \cdot 10^{3} + 2,7 \cdot 10^{3} \cdot 2,7 \cdot 10^{3} + 4,7 \cdot 10^{3} \cdot 2,7 \cdot 10^{3}} = -0,144 \text{m}\Omega^{-1} \end{aligned}$$

 R_{i}

$$V_{o} = \frac{-\frac{1}{G_{22}}R_{L}}{\frac{1}{G_{22}} + R_{L}}G_{21}V_{i} = -\frac{G_{21}R_{L}}{1 + G_{22}R_{L}}V_{i}$$


$$I_{i} = G_{11}V_{i} + G_{12}V_{o} = G_{11}V_{i} - \frac{G_{21}R_{L}}{1 + G_{22}R_{L}}G_{12}V_{i} \quad \Rightarrow \quad R_{i} = \frac{V_{i}}{I_{i}} = \frac{1}{G_{11} - \frac{G_{12}G_{21}R_{L}}{1 + G_{22}R_{L}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \quad R_{i} = \frac{1}{0,226 \cdot 10^{-3} - \frac{0,144 \cdot 10^{-3} \cdot 0,144 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3}}{1 + 0,226 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3}}} = 6,009 \text{ k}\Omega$$

II^a coppia $R_S = 0.47k\Omega$ e $R_L = 3.9k\Omega$:

$$R_{i} = \frac{1}{0,226 \cdot 10^{-3} - \frac{0,144 \cdot 10^{-3} \cdot 0,144 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}}{1 + 0,226 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}}} = 5,464k\Omega$$

 \mathbf{R}_{0}

$$V_o = \frac{1}{G_{22}} (I_o - G_{21} V_i)$$

$$V_{i} = \frac{-\frac{1}{G_{11}}R_{s}}{\frac{1}{G_{11}} + R_{s}}G_{12}V_{o} = -\frac{G_{12}R_{s}}{1 + G_{11}R_{s}}V_{o}$$

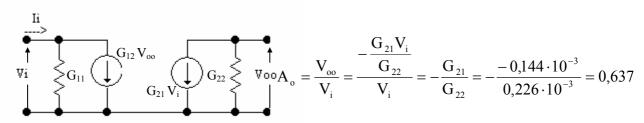
$$I_{o} = G_{21}V_{i} + G_{22}V_{o} = G_{22}V_{o} - \frac{G_{12}G_{21}R_{s}}{1 + G_{11}R_{s}}V_{o} \implies R_{o} = \frac{V_{o}}{I_{o}} = \frac{1}{G_{22} - \frac{G_{12}G_{21}R_{s}}{1 + G_{11}R_{s}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \qquad R_{o} = \frac{1}{0,226 \cdot 10^{-3} - \frac{0,144 \cdot 10^{-3} \cdot 0,144 \cdot 10^{-3} \cdot 1 \cdot 10^{3}}{1 + 0,226 \cdot 10^{-3} \cdot 1 \cdot 10^{3}}} = 4,782 \text{ k}\Omega$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$R_o = \frac{1}{0,226 \cdot 10^{-3} - \frac{0,144 \cdot 10^{-3} \cdot 0,144 \cdot 10^{-3} \cdot 0,47 \cdot 10^{3}}{1 + 0.226 \cdot 10^{-3} \cdot 0.47 \cdot 10^{3}}} = 4,604k\Omega$$

α, β


I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\alpha = \frac{R_i}{R_S + R_S} = \frac{6,009 \cdot 10^3}{1 \cdot 10^3 + 6.009 \cdot 10^3} = 0,857$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{5,464 \cdot 10^3}{0,47 \cdot 10^3 + 5,464 \cdot 10^3} = 0,921$$

$$I^{a} \text{ coppia } R_{S} = 1 k\Omega \text{ e } R_{L} = 8,2 k\Omega : \qquad \qquad \beta = \frac{R_{L}}{R_{o} + R_{L}} = \frac{8,2 \cdot 10^{3}}{4,782 \cdot 10^{3} + 8,2 \cdot 10^{3}} = 0,632$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{4,604 \cdot 10^3 + 3.9 \cdot 10^3} = 0,459$$

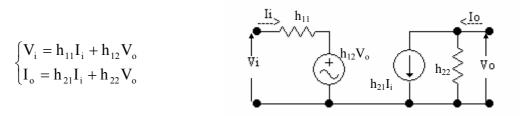
 A_0

 $\mathbf{A}_{\mathbf{v}}$ $\begin{cases} G_{12} V_{o} & & \\ G_{21} V_{i} & & \\ G_{21} V_{i} & & \\ \end{cases} \begin{cases} G_{22} & \\ V_{o} & \\ \end{cases} \begin{cases} G_{22} & \\ G_{21} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{21} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \begin{cases} G_{21} V_{i} & \\ G_{22} & \\ \end{cases} \end{cases}$

$$V_{o} = \frac{-\frac{1}{G_{22}}R_{L}}{\frac{1}{G_{22}} + R_{L}}G_{21}V_{i} = -\frac{G_{21}R_{L}}{1 + G_{22}R_{L}}V_{i}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{G_{21}R_{L}}{1 + G_{22}R_{L}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \qquad \qquad A_{v} = -\frac{-0.144 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}}{1 + 0.226 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}} = 0,414$$

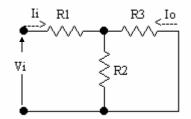

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$A_v = -\frac{-0.144 \cdot 10^{-3} \cdot 3.9 \cdot 10^{3}}{1 + 0.226 \cdot 10^{-3} \cdot 3.9 \cdot 10^{3}} = 0,298$$

$$\mathbf{A}_{\mathbf{vt}} = \alpha \mathbf{A}_{\mathbf{v}}$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ: $A_{vt} = \alpha A_v = 0.857 \cdot 0.414 = 0.355$

II^a coppia
$$R_S = 0.47$$
kΩ e $R_L = 3.9$ kΩ: $A_{yt} = \alpha A_y = 0.921 \cdot 0.298 = 0.274$

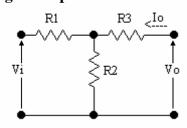
Calcolo dei parametri h e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.



Si determinano i parametri h una volta con uscita in cortocircuito, che annulla i termini con Vo, e una volta con ingresso in cortocircuito, che annulla i termini con V_i.

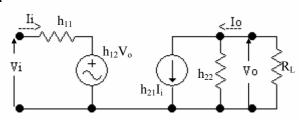
$$\begin{aligned} \textbf{Uscita in cortocircuito} & \Rightarrow & V_o = 0 & \Rightarrow & \begin{cases} V_i = h_{11} I_i \\ I_o = h_{21} I_i \end{cases} & \Rightarrow & h_{11} = \frac{V_i}{I_i} \bigg|_{V_o = 0} \left[\Omega \right] \ e \ h_{21} = \frac{I_o}{I_i} \bigg|_{V_o = 0} \left[\text{ad} \right] \end{aligned}$$

$$\begin{array}{lll} \textbf{Ingresso aperto (a vuoto)} \ \Rightarrow \ I_i = 0 \ \Rightarrow \ \left. \begin{cases} V_i = h_{12} V_o \\ I_o = h_{22} V_o \end{cases} \ \Rightarrow \ \left. h_{12} = \frac{V_i}{V_o} \right|_{I_i = 0} \left[ad \right] \ e \ h_{22} = \frac{I_o}{V_o} \right|_{I_i = 0} \left[\Omega \right] \end{array}$$


Uscita in cortocircuito

$$\begin{array}{c|c}
R1 & R3 & I_0 \\
\hline
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

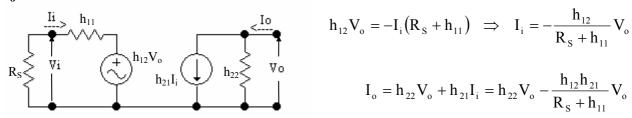
$$h_{21} = \frac{I_o}{I_i}\Big|_{V=0} = \frac{-\frac{R_2}{R_2 + R_3}I_i}{I_i} = -\frac{R_2}{R_2 + R_3} = -\frac{4.7 \cdot 10^3}{4.7 \cdot 10^3 \cdot 2.7 \cdot 10^3} = -0.635$$


Ingresso aperto

$$h_{12} = \frac{V_i}{V_o} \bigg|_{I_i = 0} = \frac{\frac{R_2}{R_2 + R_3} V_o}{V_o} = \frac{R_2}{R_2 + R_3} = \frac{4,7 \cdot 10^3}{4.7 \cdot 10^3 + 2.7 \cdot 10^3} = 0,635$$

$$h_{22} = \frac{I_o}{V_o}\Big|_{I=0} = \frac{1}{R_2 + R_3} = \frac{1}{4,7 \cdot 10^3 + 2,7 \cdot 10^3} = 0.135 \text{m}\Omega^{-1}$$

 R_i


$$V_{o} = \frac{-\frac{1}{h_{22}}R_{L}}{\frac{1}{h_{21}I_{i}} + R_{L}}h_{21}I_{i} = -\frac{h_{21}R_{L}}{1 + h_{22}R_{L}}I_{i}$$

$$V_{i} = h_{11}I_{i} + h_{12}V_{o} = h_{11}I_{i} - \frac{h_{12}h_{21}R_{L}}{1 + h_{22}R_{L}}I_{i} \implies R_{i} = \frac{V_{i}}{I_{i}} = h_{11} - \frac{h_{12}h_{21}R_{L}}{1 + h_{22}R_{L}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8.2 \text{ k}\Omega \text{:} \qquad \qquad R_{i} = 4.415 \cdot 10^{3} - \frac{-0.635 \cdot 0.635 \cdot 8.2 \cdot 10^{3}}{1 + 0.135 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}} = 5.984 \text{ k}\Omega$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ: R_i = 4,415·10³
$$-\frac{-0,635\cdot0,635\cdot3,9\cdot10^3}{1+0,135\cdot10^{-3}\cdot3,9\cdot10^3}$$
 = 5,445kΩ

 R_{o}

$$h_{12}V_o = -I_i(R_S + h_{11}) \implies I_i = -\frac{h_{12}}{R_S + h_{11}}V_o$$

$$I_o = h_{22}V_o + h_{21}I_i = h_{22}V_o - \frac{h_{12}h_{21}}{R_s + h_{11}}V_o$$

$$R_o = \frac{V_o}{I_o} = \frac{1}{h_{22} - \frac{h_{12}h_{21}}{R_S + h_{11}}}$$

 I^a coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$R_o = \frac{1}{0,135 \cdot 10^{-3} - \frac{-0,635 \cdot 0,635}{1 \cdot 10^3 + 4,415 \cdot 10^3}} = 4,774k\Omega$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$R_o = \frac{1}{0,135 \cdot 10^{-3} - \frac{-0,635 \cdot 0,635}{0,47 \cdot 10^3 + 4,415 \cdot 10^3}} = 4,596k\Omega$$

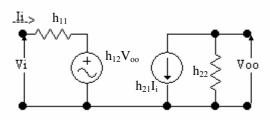
α, β

 I^a coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{5,984 \cdot 10^3}{1 \cdot 10^3 + 5,984 \cdot 10^3} = 0,857$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{5,445 \cdot 10^3}{0.47 \cdot 10^3 + 5,445 \cdot 10^3} = 0,920$$

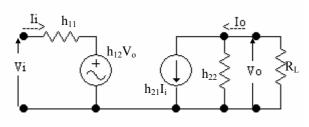

$$I^a$$
 coppia $R_S = 1kΩ$ e $R_L = 8.2kΩ$:

$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8.2 \cdot 10^3}{4.774 \cdot 10^3 + 8.2 \cdot 10^3} = 0.632$$

$$II^a$$
 coppia $R_S = 0.47$ kΩ e $R_L = 3.9$ kΩ:

$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{4.596 \cdot 10^3 + 3.9 \cdot 10^3} = 0.459$$

$\mathbf{A_o}$


$$V_{oo} = -\frac{h_{21}I_{i}}{h_{22}} \quad \Rightarrow \quad I_{i} = -\frac{h_{22}}{h_{21}}V_{oo}$$

$$V_{oo} = -\frac{h_{21}I_{i}}{h_{22}} \implies I_{i} = -\frac{h_{22}}{h_{21}}V_{oo}$$

$$V_{i} = h_{11}I_{i} + h_{12}V_{o} = -\frac{h_{11}h_{22}}{h_{21}}V_{oo} + h_{12}V_{oo}$$

$$A_{o} = \frac{V_{oo}}{V_{i}} = \frac{1}{h_{12} - \frac{h_{11}h_{22}}{h_{21}}} = \frac{1}{0,635 - \frac{4,415 \cdot 10^{3} \cdot 0,135 \cdot 10^{-3}}{-0,635}} = 0,635$$

 $\mathbf{A}_{\mathbf{v}}$

$$V_{o} = \frac{-\frac{1}{h_{22}}R_{L}}{\frac{1}{h_{21}}I_{i}} + R_{L}$$

$$V_{o} = \frac{-\frac{1}{h_{22}}R_{L}}{\frac{1}{h_{22}} + R_{L}} + \frac{h_{21}R_{L}}{1 + h_{22}R_{L}} = \frac{h_{21}R_{L}}{1 + h_{22}R_$$

$$V_{i} = h_{11}I_{i} + h_{12}V_{o} = -\frac{h_{11}(1 + h_{22}R_{L})}{h_{21}R_{L}}V_{o} + h_{12}V_{o} \implies A_{v} = \frac{V_{o}}{V_{i}} = \frac{1}{h_{12} - \frac{h_{11}(1 + h_{22}R_{L})}{h_{21}R_{L}}}$$

$$I^a$$
 coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \qquad A_{v} = \frac{1}{0,635 - \frac{4,415 \cdot 10^{3} \cdot \left(1 + 0,135 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3}\right)}{-0,635 \cdot 8,2 \cdot 10^{3}}} = 0,413$$

$$II^{a} \text{ coppia } R_{S} = 0,47 \text{k}\Omega \text{ e } R_{L} = 3,9 \text{k}\Omega \text{:} \quad A_{v} = \frac{1}{0,635 - \frac{4,415 \cdot 10^{3} \cdot \left(1 + 0,135 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}\right)}{-0,635 \cdot 3,9 \cdot 10^{3}}} = 0,298$$

$$\mathbf{A}_{\mathbf{vt}} = \alpha \mathbf{A}_{\mathbf{v}}$$

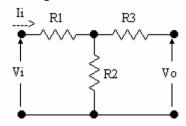
$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8,2$ kΩ:

$$A_{vt} = \alpha A_v = 0.857 \cdot 0.413 = 0.355$$

II^a coppia
$$R_S = 0.47kΩ$$
 e $R_L = 3.9kΩ$: $A_{yz} = αA_y = 0.920 \cdot 0.298 = 0.274$

$$A_{vt} = \alpha A_v = 0.920 \cdot 0.298 = 0.274$$

Calcolo dei parametri di trasmissione A, B, C, D, e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

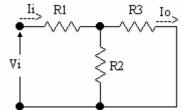

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow \begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{o} = \frac{1}{D}I_{i} - \frac{C}{D}V_{o} \end{cases} \qquad \bigvee_{i} \qquad \bigvee_{i} \qquad \bigvee_{i} \qquad \bigvee_{i} \qquad \bigvee_{j} \qquad \bigvee_{j} \qquad \bigvee_{i} \qquad \bigvee_{j} \qquad \bigvee_{i} \qquad \bigvee_{j} \qquad \bigvee_{i} \qquad \bigvee_{j} \qquad$$

Si determinano i parametri di trasmissione una volta con uscita aperta, che annulla i termini con I₀, e una volta con uscita in cortocircuito, che annulla i termini con Vo.

$$\text{Uscita aperta} \qquad \qquad \Rightarrow \ I_o = 0 \ \Rightarrow \ \begin{cases} V_i = AV_o \\ I_i = CV_o \end{cases} \ \Rightarrow \quad A = \frac{V_i}{V_o} \bigg|_{I_o = 0} \left[a \ \text{dim} \right] \ e \ C = \frac{I_i}{V_o} \bigg|_{I_o = 0} \left[\Omega^{-1} \right]$$

$$\textbf{Uscita in cortocircuito} \ \Rightarrow \ V_o = 0 \ \Rightarrow \ \begin{cases} V_i = BI_o \\ I_i = DI_o \end{cases} \ \Rightarrow \ B = \frac{V_i}{I_o} \bigg|_{V_o = 0} \Big[\Omega \Big] \qquad e \ D = \frac{I_i}{I_o} \bigg|_{V_o = 0} \Big[a \ dim \Big]$$

Uscita aperta



$$V_{o} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} \implies$$

$$\Rightarrow A = \frac{V_{i}}{V_{o}} \Big|_{I_{0} = 0} = 1 + \frac{R_{1}}{R_{2}} = 1 + \frac{2.7 \cdot 10^{3}}{4.7 \cdot 10^{3}} = 1,574$$

$$V_o = R_2 I_i \implies C = \frac{I_i}{V_o} \Big|_{I_o = 0} = \frac{1}{R_2} = \frac{1}{4,7 \cdot 10^3} = 0.213 \text{m}\Omega^{-1}$$

Uscita in cortocircuito

$$I_{o} = \frac{\frac{R_{2}R_{3}}{R_{2} + R_{3}}}{R_{1} + \frac{R_{2}R_{3}}{R_{2} + R_{3}}} \cdot \frac{V_{i}}{R_{3}} = \frac{R_{2}}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}} V_{i}$$

$$B = \frac{V_i}{I_o}\Big|_{V_o = 0} = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_2} = R_1 + R_3 + \frac{R_1R_3}{R_2} = 2,7 \cdot 10^3 + 2,7 \cdot 10^3 + \frac{2,7^2 \cdot 10^6}{4,7 \cdot 10^3} = 6,95k\Omega$$

$$I_o = \frac{R_2}{R_2 + R_3} I_i \implies D = \frac{I_i}{I_o} \Big|_{V_o = 0} = 1 + \frac{R_3}{R_2} = 1 + \frac{2.7 \cdot 10^3}{4.7 \cdot 10^3} = 1.574$$

Il calcolo dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}, dal circuito equivalente, è identico a quello già effettuato in precedenza. Verranno, pertanto, riportate solo le formule di calcolo.

$$\mathbf{R_{i}} = \frac{\mathbf{V_{i}}}{\mathbf{I_{i}}} = \frac{\mathbf{AR_{L}} + \mathbf{B}}{\mathbf{CR_{L}} + \mathbf{D}}$$

$$I^{a} \text{ coppia } R_{S} = 1 k \Omega \text{ e } R_{L} = 8,2 k \Omega \text{:} \qquad \qquad R_{i} = \frac{1,574 \cdot 8,2 \cdot 10^{3} + 6,95 \cdot 10^{3}}{0,213 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3} + 1,574} = 5,980 k \Omega$$

$$II^{a} \ coppia \ R_{S} = 0,47 \\ k\Omega \ e \ R_{L} = 3,9 \\ k\Omega : \qquad R_{i} = \frac{1,574 \cdot 3,9 \cdot 10^{3} + 6,95 \cdot 10^{3}}{0,213 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3} + 1,574} = 5,443 \\ k\Omega = 0.00 \\$$

$$\mathbf{R}_{o} = \frac{\mathbf{V}_{o}}{\mathbf{I}_{o}} = \frac{\mathbf{B} + \mathbf{DR}_{s}}{\mathbf{A} + \mathbf{CR}_{s}}$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$R_o = \frac{6,95 \cdot 10^3 + 1,574 \cdot 1 \cdot 10^3}{1.574 + 0.213 \cdot 10^{-3} \cdot 1 \cdot 10^3} = 4,77kΩ$$

$$II^{a} \text{ coppia } R_{S} = 0,47k\Omega \text{ e } R_{L} = 3,9k\Omega \text{:} \qquad R_{o} = \frac{6,95 \cdot 10^{3} + 1,574 \cdot 0,47 \cdot 10^{3}}{1,574 + 0,213 \cdot 10^{-3} \cdot 0,47 \cdot 10^{3}} = 4,593k\Omega$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{1}{A} = \frac{1}{1,574} = 0,635$$

$$\mathbf{A_{v}} = \frac{\mathbf{V_{o}}}{\mathbf{V_{i}}} = \frac{\mathbf{R_{L}}}{\mathbf{AR_{L}} + \mathbf{B}}$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$A_v = \frac{8,2 \cdot 10^3}{1,574 \cdot 8,2 \cdot 10^3 + 6,95 \cdot 10^3} = 0,413$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$A_v = \frac{3,9 \cdot 10^3}{1,574 \cdot 3,9 \cdot 10^3 + 6.95 \cdot 10^3} = 0,298$$

α, β

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{5,98 \cdot 10^3}{1 \cdot 10^3 + 5,98 \cdot 10^3} = 0,857$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{5,443 \cdot 10^3}{0,47 \cdot 10^3 + 5,443 \cdot 10^3} = 0,920$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8,2 \cdot 10^3}{4,77 \cdot 10^3 + 8,2 \cdot 10^3} = 0,632$$

II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{4.593 \cdot 10^3 + 3.9 \cdot 10^3} = 0.459$$

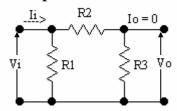
$$\mathbf{A_{vt}} = \alpha \mathbf{A_{v}}$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ: $A_{vt} = \alpha A_v = 0.857 \cdot 0.413 = 0.355$

II^a coppia
$$R_S = 0.47kΩ$$
 e $R_L = 3.9kΩ$: $A_{yt} = αA_y = 0.920 \cdot 0.298 = 0.274$

QUADRIPOLO A Π SIMMETRICO

Per il calcolo dei parametri R_i , R_o , α , A_o , A_v , β , A_{vt} , si utilizzano direttamente le espressioni già ricavate per il quadripolo a T.


Calcolo dei parametri R e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

Poiché il quadripolo è costituito da sole resistenze, al posto dell'impedenza Z si scrive R, resistenza.

$$\begin{cases} V_{i} = R_{11}I_{i} + R_{12}I_{o} \\ V_{o} = R_{21}I_{i} + R_{22}I_{o} \end{cases}$$

Si determinano i parametri R una volta con uscita a vuoto, che annulla i termini con I_o , e una volta con ingresso a vuoto, che annulla i termini con I_i .

Uscita aperta

$$R_{11} = \frac{V_{i}}{I_{i}}\Big|_{I_{0}=0} = \frac{R_{1}(R_{2} + R_{3})}{R_{1} + R_{2} + R_{3}} = \frac{4,7 \cdot 10^{3} (2,7 \cdot 10^{3} + 4,7 \cdot 10^{3})}{4,7 \cdot 10^{3} + 2,7 \cdot 10^{3} + 4,7 \cdot 10^{3}} = 2,87k\Omega$$

$$\begin{aligned} \mathbf{V}_{o} &= \mathbf{R}_{3} \mathbf{I}_{3} = \mathbf{R}_{3} \cdot \frac{\mathbf{R}_{1}}{\mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}} \mathbf{I}_{i} \implies \\ &\Rightarrow \mathbf{R}_{21} = \frac{\mathbf{V}_{o}}{\mathbf{I}_{i}} \bigg|_{\mathbf{I}_{1} = 0} = \frac{\mathbf{R}_{1} \mathbf{R}_{3}}{\mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}} = \frac{4.7 \cdot 10^{3} \cdot 4.7 \cdot 10^{3}}{4.7 \cdot 10^{3} + 2.7 \cdot 10^{3} + 4.7 \cdot 10^{3}} = 1.825 \mathrm{k}\Omega \end{aligned}$$

Ingresso aperto

$$V_{o} = R_{3}I_{3} = R_{3} \cdot \frac{R_{1}}{R_{1} + R_{2} + R_{3}}I_{i} \implies R_{21} = \frac{V_{o}}{I_{i}}\Big|_{I_{o} = 0} = \frac{R_{1}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{4,7 \cdot 10^{3} \cdot 4,7 \cdot 10^{3}}{4,7 \cdot 10^{3} + 2,7 \cdot 10^{3} + 4,7 \cdot 10^{3}} = 1,825k\Omega$$

$$R_{22} = \frac{V_o}{I_o}\bigg|_{I=0} = \frac{R_3(R_1 + R_2)}{R_1 + R_2 + R_3} = \frac{4.7 \cdot 10^3 (2.7 \cdot 10^3 + 4.7 \cdot 10^3)}{4.7 \cdot 10^3 + 2.7 \cdot 10^3 + 4.7 \cdot 10^3} = 2.87 k\Omega$$

Il calcolo dei parametri R_i , R_o , α , A_o , A_v , β , A_{vt} viene fatto per due coppie di valori di resistenze di sorgente e di carico: I^a coppia $R_s = 1k\Omega$ e $R_L = 8.2k\Omega$; II^a coppia $R_s = 0.47k\Omega$ e $R_L = 3.9k\Omega$.

$$\mathbf{R_{i}} = \frac{\mathbf{V_{i}}}{\mathbf{I_{i}}} = \mathbf{R_{11}} - \frac{\mathbf{R_{12}R_{21}}}{\mathbf{R_{22}} + \mathbf{R_{L}}}$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$R_i = 2,87 \cdot 10^3 - \frac{1,825 \cdot 10^3 \cdot 1,825 \cdot 10^3}{2.87 \cdot 10^3 + 8.2 \cdot 10^3} = 2,569kΩ$$

II^a coppia R_S = 0,47kΩ e R_L = 3,9kΩ:
$$R_i = 2,87 \cdot 10^3 - \frac{1,825 \cdot 10^3 \cdot 1,825 \cdot 10^3}{2,87 \cdot 10^3 + 3,9 \cdot 10^3} = 2,378kΩ$$

$$R_o = \frac{V_o}{I_o} = R_{22} - \frac{R_{12}R_{21}}{R_{11} + R_S}$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$R_o = 2,87 \cdot 10^3 - \frac{1,825 \cdot 10^3 \cdot 1,825 \cdot 10^3}{2.87 \cdot 10^3 + 1 \cdot 10^3} = 2,01kΩ$$

II^a coppia
$$R_S = 0,47k\Omega$$
 e $R_L = 3,9k\Omega$:
$$R_o = 2,87 \cdot 10^3 - \frac{1,825 \cdot 10^3 \cdot 1,825 \cdot 10^3}{2,87 \cdot 10^3 + 0,47 \cdot 10^3} = 1,873k\Omega$$
 α, β

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{2,569 \cdot 10^3}{1 \cdot 10^3 + 2,569 \cdot 10^3} = 0,72$$

II^a coppia
$$R_S = 0,47k\Omega$$
 e $R_L = 3,9k\Omega$:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{2,378 \cdot 10^3}{0,47 \cdot 10^3 + 2,378 \cdot 10^3} = 0,835$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8,2 \cdot 10^3}{2,01 \cdot 10^3 + 8,2 \cdot 10^3} = 0,803$$

II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{1.873 \cdot 10^3 + 3.9 \cdot 10^3} = 0.675$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{R_{21}}{R_{11}} = \frac{1,825 \cdot 10^3}{2,78 \cdot 10^3} = 0,636$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{21}R_{L}}{R_{11}(R_{22} + R_{L}) - R_{12}R_{21}}$$

 I^a coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

$$A_{v} = \frac{1,825 \cdot 10^{3} \cdot 8,2 \cdot 10^{3}}{2,87 \cdot 10^{3} \left(8,2 \cdot 10^{3} + 2,87 \cdot 10^{3}\right) - 1,825 \cdot 10^{3} \cdot 1,825 \cdot 10^{3}} = 0,526$$

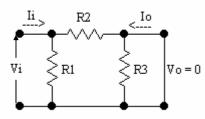
II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$A_{v} = \frac{1,825 \cdot 10^{3} \cdot 3,9 \cdot 10^{3}}{2,87 \cdot 10^{3} \left(3,9 \cdot 10^{3} + 2,87 \cdot 10^{3}\right) - 1,825 \cdot 10^{3} \cdot 1,825 \cdot 10^{3}} = 0,442$$

 $A_{vt} = \alpha A_v$ $\mathbf{A}_{\mathbf{vt}}$

 $A_{vt} = \alpha A_v = 0.72 \cdot 0.526 = 0.379$ I^a coppia $R_S = 1kΩ$ e $R_L = 8,2kΩ$:

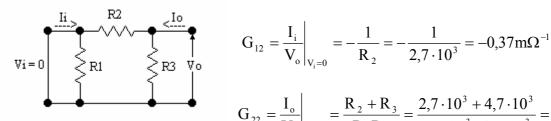
II^a coppia $R_S = 0.47$ kΩ e $R_L = 3.9$ kΩ: $A_{vt} = \alpha A_v = 0.832 \cdot 0.442 = 0.368$


Calcolo dei parametri G e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

Poiché il quadripolo è costituito da sole resistenze, al posto dell'ammettenza Y si scrive G, conduttanza.

 $\begin{cases} I_{i} = G_{11}V_{i} + G_{12}V_{o} \\ I_{o} = G_{21}V_{i} + G_{22}V_{o} \end{cases}$

Si determinano i parametri G una volta con uscita in cortocircuito, che annulla i termini con Vo, e una volta con ingresso in cortocircuito, che annulla i termini con Vi.


Uscita in cortocircuito

$$G_{11} = \frac{I_{i}}{V_{i}}\Big|_{V_{o}=0} = \frac{R_{1} + R_{2}}{R_{1}R_{2}} = \frac{4.7 \cdot 10^{3} + 2.7 \cdot 10^{3}}{4.7 \cdot 10^{3} \cdot 2.7 \cdot 10^{3}} = 0.583 \text{m}\Omega^{-1}$$

$$G_{21} = \frac{I_o}{V_i}\Big|_{V_a=0} = -\frac{1}{R_2} = -\frac{1}{2,7 \cdot 10^3} = -0.37 \text{m}\Omega^{-1}$$

Ingresso in cortocircuito

$$G_{12} = \frac{I_i}{V_0}\Big|_{V=0} = -\frac{1}{R_2} = -\frac{1}{2.7 \cdot 10^3} = -0.37 \text{m}\Omega^{-1}$$

$$G_{22} = \frac{I_o}{V_o} \bigg|_{V_i = 0} = \frac{R_2 + R_3}{R_2 R_3} = \frac{2,7 \cdot 10^3 + 4,7 \cdot 10^3}{2,7 \cdot 10^3 \cdot 4,7 \cdot 10^3} = 0,583 \text{m}\Omega^{-1}$$

$$\mathbf{R_{i}} = \frac{\mathbf{V_{i}}}{\mathbf{I_{i}}} = \frac{1}{\mathbf{G_{11}} - \frac{\mathbf{G_{12}}\mathbf{G_{21}}\mathbf{R_{L}}}{1 + \mathbf{G_{22}}\mathbf{R_{L}}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \qquad R_{i} = \frac{1}{0,583 \cdot 10^{-3} - \frac{0,37 \cdot 10^{-3} \cdot 0,37 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3}}{1 + 0,583 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3}}} = 2,572 \text{ k}\Omega$$

II^a coppia $R_S = 0.47kΩ$ e $R_L = 3.9kΩ$:

$$R_{i} = \frac{1}{0,583 \cdot 10^{-3} - \frac{0,37 \cdot 10^{-3} \cdot 0,37 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}}{1 + 0,583 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}}} = 2,381k\Omega$$

$$\mathbf{R}_{o} = \frac{\mathbf{V}_{o}}{\mathbf{I}_{o}} = \frac{1}{\mathbf{G}_{22} - \frac{\mathbf{G}_{12}\mathbf{G}_{21}\mathbf{R}_{S}}{1 + \mathbf{G}_{11}\mathbf{R}_{S}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8.2 \text{ k}\Omega \text{:} \qquad R_{o} = \frac{1}{0.583 \cdot 10^{-3} - \frac{0.37 \cdot 10^{-3} \cdot 0.37 \cdot 10^{-3} \cdot 1 \cdot 10^{3}}{1 + 0.583 \cdot 10^{-3} \cdot 1 \cdot 10^{3}}} = 2.01 \text{ k}\Omega$$

II^a coppia $R_S = 0.47$ kΩ e $R_L = 3.9$ kΩ:

$$R_o = \frac{1}{0.583 \cdot 10^{-3} - \frac{0.37 \cdot 10^{-3} \cdot 0.37 \cdot 10^{-3} \cdot 0.47 \cdot 10^{3}}{1 + 0.583 \cdot 10^{-3} \cdot 0.47 \cdot 10^{3}}} = 1.878k\Omega$$

α, β

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{2,572 \cdot 10^3}{1 \cdot 10^3 + 2,572 \cdot 10^3} = 0,72$$

II^a coppia
$$R_S = 0.47 k\Omega$$
 e $R_L = 3.9 k\Omega$:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{2.381 \cdot 10^3}{0.47 \cdot 10^3 + 2.381 \cdot 10^3} = 0.835$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8,2 \cdot 10^3}{2,01 \cdot 10^3 + 8,2 \cdot 10^3} = 0,803$$

II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{1.878 \cdot 10^3 + 3.9 \cdot 10^3} = 0.675$$

$$A_o = \frac{V_{oo}}{V_i} = -\frac{G_{21}}{G_{22}} = -\frac{-0.37 \cdot 10^{-3}}{0.583 \cdot 10^{-3}} = 0.635$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{G_{21}R_{L}}{1 + G_{22}R_{L}}$$

$$I^a$$
 coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

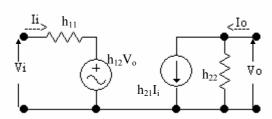
$$A_{v} = -\frac{-0.37 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}}{1 + 0.583 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}} = 0.525$$

II^a coppia
$$R_S$$
 = 0,47kΩ e R_L = 3,9kΩ:

$$A_{v} = -\frac{-0.37 \cdot 10^{-3} \cdot 3.9 \cdot 10^{3}}{1 + 0.583 \cdot 10^{-3} \cdot 3.9 \cdot 10^{3}} = 0.441$$

$$\mathbf{A_{vt}} \qquad \qquad \mathbf{A_{vt}} = \alpha \mathbf{A_{v}}$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:


$$A_{vt} = \alpha A_{v} = 0.72 \cdot 0.525 = 0.378$$

II^a coppia
$$R_S = 0.47$$
kΩ e $R_L = 3.9$ kΩ:

$$A_{vt} = \alpha A_{v} = 0.835 \cdot 0.441 = 0.368$$

Calcolo dei parametri h e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

$$\begin{cases} V_{i} = h_{11}I_{i} + h_{12}V_{o} \\ I_{o} = h_{21}I_{i} + h_{22}V_{o} \end{cases}$$

Si determinano i parametri h una volta con uscita in cortocircuito, che annulla i termini con V_o, e una volta con ingresso in cortocircuito, che annulla i termini con V_i.

Uscita in cortocircuito

Ingresso aperto

$$\begin{vmatrix} \mathbf{k}_{12} & \mathbf{k}_{12} & \mathbf{k}_{12} & \mathbf{k}_{12} & \mathbf{k}_{12} & \mathbf{k}_{12} & \mathbf{k}_{13} & \mathbf{k}_{14} & \mathbf{$$

$$h_{22} = \frac{I_o}{V_o}\bigg|_{I_1=0} = \frac{R_1 + R_2 + R_3}{\left(R_1 + R_2\right)R_3} = \frac{4.7 \cdot 10^3 + 2.7 \cdot 10^3 + 4.7 \cdot 10^3}{\left(4.7 \cdot 10^3 + 2.7 \cdot 10^3\right) \cdot 4.7 \cdot 10^3} = 0.348 \text{m}\Omega^{-1}$$

$$\mathbf{R_{i}} = \frac{\mathbf{V_{i}}}{\mathbf{I_{i}}} = \mathbf{h_{11}} - \frac{\mathbf{h_{12}h_{21}R_{L}}}{1 + \mathbf{h_{22}R_{L}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8.2 \text{ k}\Omega \text{:} \qquad \qquad R_{i} = 1.715 \cdot 10^{3} - \frac{-0.635 \cdot 0.635 \cdot 8.2 \cdot 10^{3}}{1 + 0.358 \cdot 10^{-3} \cdot 8.2 \cdot 10^{3}} = 2.555 \text{ k}\Omega$$

$$II^{a} \text{ coppia } R_{S} = 0,47k\Omega \text{ e } R_{L} = 3,9k\Omega \text{:} \qquad R_{i} = 1,715 \cdot 10^{3} - \frac{-0,635 \cdot 0,635 \cdot 3,9 \cdot 10^{3}}{1 + 0,358 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3}} = 2,371k\Omega$$

$$\mathbf{R}_{o} = \frac{\mathbf{V}_{o}}{\mathbf{I}_{o}} = \frac{1}{\mathbf{h}_{22} - \frac{\mathbf{h}_{12}\mathbf{h}_{21}}{\mathbf{R}_{S} + \mathbf{h}_{11}}}$$

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:}$$

$$R_{o} = \frac{1}{0,348 \cdot 10^{-3} - \frac{-0,635 \cdot 0,635}{1 \cdot 10^{3} + 1,715 \cdot 10^{3}}} = 2,01 \text{ k}\Omega$$

$$II^{a} \text{ coppia } R_{S} = 0,47k\Omega \text{ e } R_{L} = 3,9k\Omega \text{:} \qquad \qquad R_{o} = \frac{1}{0,348 \cdot 10^{-3} - \frac{-0,635 \cdot 0,635}{0,47 \cdot 10^{3} + 1,715 \cdot 10^{3}}} = 1,878k\Omega \text{:}$$

α, β

$$I^{a} \text{ coppia } R_{S} = 1 \text{ k}\Omega \text{ e } R_{L} = 8,2 \text{ k}\Omega \text{:} \qquad \qquad \alpha = \frac{R_{i}}{R_{S} + R_{i}} = \frac{2,555 \cdot 10^{3}}{1 \cdot 10^{3} + 2,555 \cdot 10^{3}} = 0,72$$

II^a coppia
$$R_S = 0,47k\Omega$$
 e $R_L = 3,9k\Omega$:
$$\alpha = \frac{R_i}{R_S + R_i} = \frac{2,555 \cdot 10^3}{0,47 \cdot 10^3 + 2,555 \cdot 10^3} = 0,845$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$\beta = \frac{R_L}{R_o + R_L} = \frac{8,2 \cdot 10^3}{2,01 \cdot 10^3 + 8,2 \cdot 10^3} = 0,803$$

II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$:
$$\beta = \frac{R_L}{R_0 + R_L} = \frac{3.9 \cdot 10^3}{1.878 \cdot 10^3 + 3.9 \cdot 10^3} = 0.675$$

$$\mathbf{A_o} \qquad \qquad \mathbf{A_o} = \frac{\mathbf{V_{oo}}}{\mathbf{V_i}} = \frac{1}{\mathbf{h_{12}} - \frac{\mathbf{h_{11}h_{22}}}{\mathbf{h_{21}}}} = \frac{1}{0,635 - \frac{1,715 \cdot 10^3 \cdot 0,348 \cdot 10^{-3}}{-0,635}} = 0,635$$

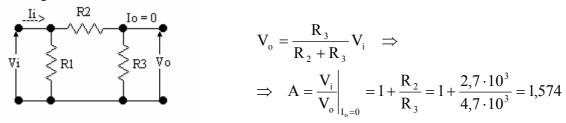
$$\mathbf{A_v} \qquad \qquad \mathbf{A_v} = \frac{\mathbf{V_o}}{\mathbf{V_i}} = \frac{1}{\mathbf{h_{12}} - \frac{\mathbf{h_{11}(l + h_{22}R_L)}}{\mathbf{h_{21}R_L}}}$$

I^a coppia R_S = 1kΩ e R_L = 8,2kΩ:
$$A_v = \frac{1}{0,635 - \frac{1,715 \cdot 10^3 \cdot (1 + 0,348 \cdot 10^{-3} \cdot 8,2 \cdot 10^3)}{-0.635 \cdot 8 \cdot 2 \cdot 10^3}} = 0,525$$

II^a coppia
$$R_S = 0,47k\Omega$$
 e $R_L = 3,9k\Omega$: $A_v = \frac{1}{0,635 - \frac{1,715 \cdot 10^3 \cdot (1 + 0,348 \cdot 10^{-3} \cdot 3,9 \cdot 10^3)}{-0.635 \cdot 3.9 \cdot 10^3}} = 0,441$

$$\mathbf{A_{vt}} = \alpha \mathbf{A_{v}}$$

I^a coppia
$$R_S = 1kΩ$$
 e $R_L = 8.2kΩ$: $A_{yt} = αA_y = 0.72 \cdot 0.525 = 0.379$


II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$: $A_{vt} = \alpha A_v = 0.845 \cdot 0.441 = 0.373$

Calcolo dei parametri di trasmissione A, B, C, D, e dei parametri R_i, R_o, α, A_o, A_v, β, A_{vt}.

$$\begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{i} = CV_{o} + DI_{o} \end{cases} \Rightarrow \begin{cases} V_{i} = AV_{o} + BI_{o} \\ I_{o} = \frac{1}{D}I_{i} - \frac{C}{D}V_{o} \end{cases} \qquad \forall i \qquad BI_{o} + CODV_{o} \qquad \forall i \qquad \forall i \qquad \forall i \qquad \forall j \ \forall j$$

Si determinano i parametri di trasmissione una volta con uscita aperta, che annulla i termini con I_o , e una volta con uscita in cortocircuito, che annulla i termini con V_o .

Uscita aperta

$$\begin{aligned} \mathbf{V}_{o} &= \mathbf{R}_{3} \mathbf{I}_{3} = \mathbf{R}_{3} \cdot \frac{\mathbf{R}_{1}}{\mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}} \mathbf{I}_{i} \quad \Rightarrow \\ &\Rightarrow \quad \mathbf{C} = \frac{\mathbf{I}_{i}}{\mathbf{V}_{o}} \bigg|_{\mathbf{I}_{o} = 0} = \frac{\mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}}{\mathbf{R}_{1} \mathbf{R}_{3}} = \frac{4.7 \cdot 10^{3} + 2.7 \cdot 10^{3} + 4.7 \cdot 10^{3}}{4.7 \cdot 10^{3} \cdot 4.7 \cdot 10^{3}} = 0.548 \text{m} \Omega^{-1} \end{aligned}$$

Uscita in cortocircuito

$$\begin{array}{c|c} Ii \\ \hline \\ Vi \\ \hline \\ R1 \\ \hline \\ R3 \\ \hline \\ V_0 = 0 \end{array} \qquad V_i = R_2 I_o \quad \Rightarrow \quad B = \frac{V_i}{I_o} \bigg|_{V_o = 0} = R_2 = 2,7k\Omega$$

$$I_o = \frac{R_1}{R_1 + R_2} I_i \implies D = \frac{I_i}{I_o} \Big|_{V_c = 0} = 1 + \frac{R_2}{R_1} = 1 + \frac{2.7 \cdot 10^3}{4.7 \cdot 10^3} = 1,574$$

$$\mathbf{R}_{\mathbf{i}}$$

$$R_{i} = \frac{V_{i}}{I_{i}} = \frac{AR_{L} + B}{CR_{I} + D}$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$R_{i} = \frac{1,574 \cdot 8,2 \cdot 10^{3} + 2,7 \cdot 10^{3}}{0,548 \cdot 10^{-3} \cdot 8,2 \cdot 10^{3} + 1,574} = 2,572k\Omega$$

II^a coppia
$$R_S = 0,47kΩ$$
 e $R_L = 3,9kΩ$:

$$R_{i} = \frac{1,574 \cdot 3,9 \cdot 10^{3} + 2,7 \cdot 10^{3}}{0,548 \cdot 10^{-3} \cdot 3,9 \cdot 10^{3} + 1,574} = 2,381k\Omega$$

$$\mathbf{R}_{\mathbf{o}}$$

$$R_o = \frac{V_o}{I_o} = \frac{B + DR_S}{A + CR_S}$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$R_o = \frac{2.7 \cdot 10^3 + 1.574 \cdot 1 \cdot 10^3}{0.548 \cdot 10^{-3} \cdot 1 \cdot 10^3 + 1.574} = 2.01 \text{k}\Omega$$

II^a coppia
$$R_S = 0,47kΩ$$
 e $R_L = 3,9kΩ$:

$$R_o = \frac{2.7 \cdot 10^3 + 1.574 \cdot 0.47 \cdot 10^3}{0.548 \cdot 10^{-3} \cdot 0.47 \cdot 10^3 + 1.574} = 1.878k\Omega$$

$$\mathbf{A_o}$$

$$A_o = \frac{V_{oo}}{V_i} = \frac{1}{A} = \frac{1}{1,574} = 0,635$$

$$\mathbf{A}_{\mathbf{v}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{AR_{L} + B}$$

$$I^a$$
 coppia $R_S = 1k\Omega$ e $R_L = 8.2k\Omega$:

$$A_v = \frac{8.2 \cdot 10^3}{1.574 \cdot 8.2 \cdot 10^3 + 2.7 \cdot 10^3} = 0.525$$

II^a coppia
$$R_S = 0,47kΩ$$
 e $R_L = 3,9kΩ$:

$$A_{v} = \frac{3.9 \cdot 10^{3}}{1.574 \cdot 3.9 \cdot 10^{3} + 2.7 \cdot 10^{3}} = 0.441$$

α, β

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{2,572 \cdot 10^3}{1 \cdot 10^3 + 2,572 \cdot 10^3} = 0,72$$

II^a coppia
$$R_S = 0.47$$
kΩ e $R_L = 3.9$ kΩ:

$$\alpha = \frac{R_i}{R_s + R_i} = \frac{2,572 \cdot 10^3}{0,47 \cdot 10^3 + 2,572 \cdot 10^3} = 0,845$$

$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$\beta = \frac{R_L}{R_0 + R_L} = \frac{8.2 \cdot 10^3}{2.01 \cdot 10^3 + 8.2 \cdot 10^3} = 0.803$$

II^a coppia
$$R_S = 0.47$$
kΩ e $R_L = 3.9$ kΩ:

$$\beta = \frac{R_L}{R_o + R_L} = \frac{3.9 \cdot 10^3}{1.878 \cdot 10^3 + 3.9 \cdot 10^3} = 0.675$$

$$\mathbf{A}_{\mathbf{vt}} = \alpha \mathbf{A}_{\mathbf{v}}$$

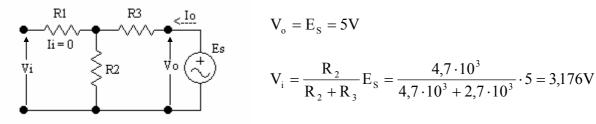
$$I^a$$
 coppia $R_S = 1$ kΩ e $R_L = 8.2$ kΩ:

$$A_{vt} = \alpha A_{v} = 0.72 \cdot 0.525 = 0.379$$

II^a coppia
$$R_S = 0.47k\Omega$$
 e $R_L = 3.9k\Omega$: $A_{vt} = \alpha A_v = 0.845 \cdot 0.441 = 0.373$

$$A_{yt} = \alpha A_y = 0.845 \cdot 0.441 = 0.373$$

MISURA DEI PARAMETRI R, G, h, DI TRASMISSIONE

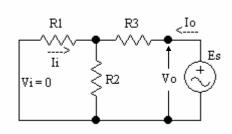

La misura dei parametri R, G, h, di trasmissione si riduce alla misura delle correnti e delle tensioni di ingresso e d'uscita con, rispettivamente, uscita aperta e in cortocircuito e ingresso aperto e in cortocircuito. Nella tabella sono riassunti i parametri e le condizioni di misura.

Condizioni di	Parametri Z	Parametri Y	Parametri h	Parametri di
misura	(impedenze)	(ammettenze)	(ibridi)	trasmissione
Ingresso aperto	$Z_{12} = \frac{V_i}{I_o} \bigg _{I_i = 0}$		$h_{12} = \frac{V_i}{V_o} \bigg _{I_i = 0}$	
	$Z_{22} = \frac{V_o}{I_o}\bigg _{I_i=0}$		$h_{22} = \frac{I_o}{V_o}\bigg _{I_i = 0}$	
Ingresso in cortocircuito		$Y_{12} = \frac{I_i}{V_o} \bigg _{V_i = 0}$		
		$Y_{22} = \frac{I_o}{V_o} \bigg _{V_i = 0}$		
Uscita aperta	$Z_{11} = \frac{V_i}{I_i} \bigg _{I_0 = 0}$			$A = \frac{V_o}{V_i} \bigg _{I_o = 0}$
	$Z_{21} = \frac{V_{o}}{I_{i}} \Big _{I_{o}=0}$			$C = \frac{I_i}{V_o} \Big _{I_o = 0}$
Uscita in cortocircuito		$Y_{11} = \frac{I_i}{V_i} \bigg _{V_o = 0}$	$h_{11} = \frac{V_i}{I_i} \bigg _{V_o = 0}$	$B = \frac{V_i}{I_o} \bigg _{V_o = 0}$
		$Y_{21} = \frac{I_o}{V_i} \bigg _{V_o = 0}$	$h_{21} = \frac{I_o}{I_i} \bigg _{V_o = 0}$	$D = \frac{I_i}{I_o} \bigg _{V_o = 0}$

CALCOLO DELLE TENSIONI E DELLE CORRENTI DI INGRESSO E D'USCITA CON USCITA E INGRESSO A VUOTO E IN CORTOCIRCUITO

QUADRIPOLO A T

Ingresso aperto $I_i = 0$



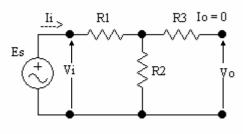
$$V_0 = E_S = 5V$$

$$V_i = \frac{R_2}{R_2 + R_3} E_S = \frac{4.7 \cdot 10^3}{4.7 \cdot 10^3 + 2.7 \cdot 10^3} \cdot 5 = 3.176 V_S$$

$$I_o = \frac{E_S}{R_2 + R_3} = \frac{5}{4.7 \cdot 10^3 + 2.7 \cdot 10^3} = 0.676 \text{mA}$$

Ingresso in corto circuito $V_i = 0$

$$V_0 = E_S = 5V$$


$$V_{o} = E_{S} = 5V$$

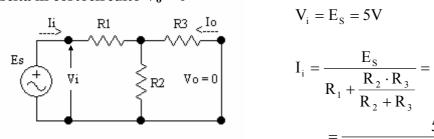
$$I_{o} = \frac{E_{S}}{R_{3} + \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}} = \frac{5}{2,7 \cdot 10^{3} + \frac{2,7 \cdot 10^{3} \cdot 4,7 \cdot 10^{3}}{2,7 \cdot 10^{3} + 4,7 \cdot 10^{3}}} = 1,132\text{mA}$$

$$I_i = -\frac{R_2}{R_1 + R_2}I_o = -\frac{4.7 \cdot 10^3}{2.7 \cdot 10^3 + 4.7 \cdot 10^3} \cdot 1.132 \cdot 10^{-3} = -0.719 \text{mA}$$

La corrente I_i ha segno negativo perché il suo verso è opposto a quello della tensione.

Uscita aperta $I_0 = 0$

$V_i = E_s = 5V$

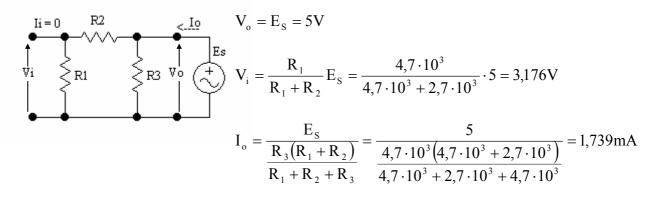

$$V_{o} = \frac{R_{2}}{R_{1} + R_{2}} E_{S} = \frac{4.7 \cdot 10^{3}}{2.7 \cdot 10^{3} + 4.7 \cdot 10^{3}} \cdot 5 = 3,176V$$

$$I_o = \frac{E_S}{R_A + R_A} = \frac{5}{4.7 \cdot 10^3 + 2.7 \cdot 10^3} = 0,676 \text{mA}$$

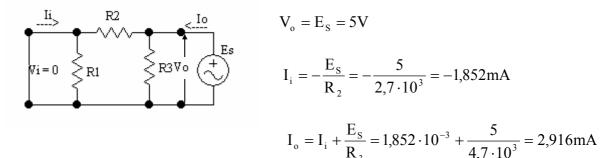
$$V_i = E_S = 5V$$

$$I_{i} = \frac{E_{s}}{R_{1} + \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}}} = \frac{5}{2,7 \cdot 10^{3} + \frac{4,7 \cdot 10^{3} \cdot 2,7 \cdot 10^{3}}{4,7 \cdot 10^{3} + 2,7 \cdot 10^{3}}} = 1,132\text{mA}$$

Uscita in cortocircuito $V_0 = 0$

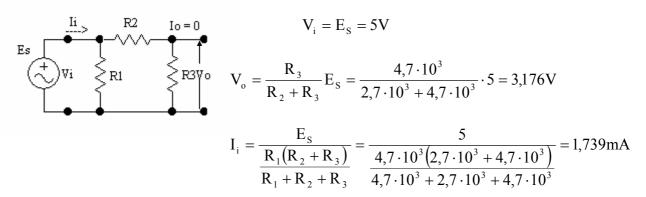


$$I_o = -\frac{R_2}{R_2 + R_3}I_i = -\frac{4.7 \cdot 10^3}{2.7 \cdot 10^3 + 4.7 \cdot 10^3} \cdot 1.132 \cdot 10^{-3} = -0.719 \text{mA}$$

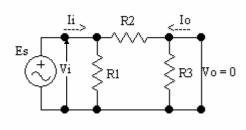

La corrente I₀ ha segno negativo perché il suo verso è opposto a quello della tensione.

QUADRIPOLO A Π

Ingresso aperto $I_i = 0$



Ingresso in corto circuito $V_i = 0$

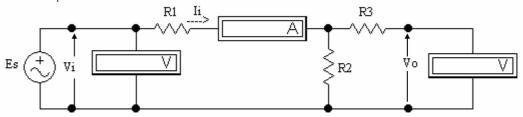


La corrente I_i ha segno negativo perché il suo verso è opposto a quello della tensione.

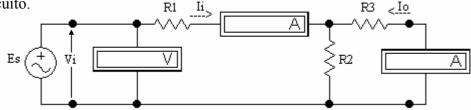
Uscita aperta $I_0 = 0$

Uscita in cortocircuito $V_o = 0$

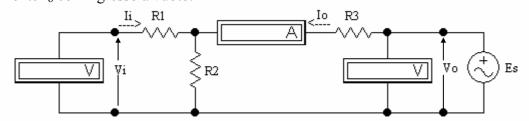
$$V_i = E_S = 5V$$

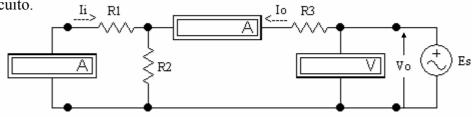

$$I_o = -\frac{E_s}{R_2} = -\frac{5}{2,7 \cdot 10^3} = -1,852 \text{mA}$$

$$I_i = I_o + \frac{E_S}{R_1} = 1,852 \cdot 10^{-3} + \frac{5}{4,7 \cdot 10^3} = 2,916 \text{mA}$$

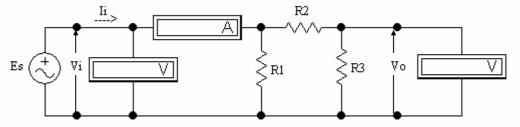

La corrente I_o ha segno negativo perché il suo verso è opposto a quello della tensione.

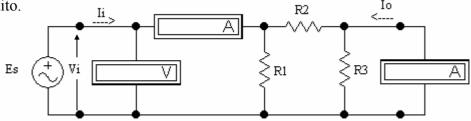
Procedimento di misura quadripolo a T


1. Si collega ai terminali d'ingresso il generatore E_S regolato a 5V e si misurano le tensioni V_i e V_o e la corrente I_i con uscita a vuoto.

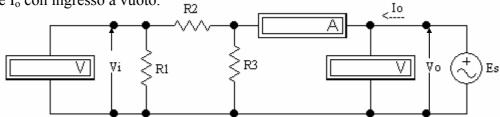

2. Si cortocircuita l'uscita e si misurano la tensione V_i e le correnti I_i e I_o con uscita in cortocircuito.

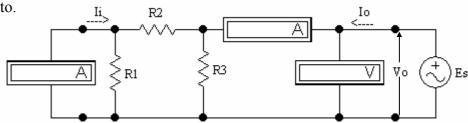
3. Si collega il generatore E_S regolato a 5V ai terminali d'uscita e si misurano le tensioni V_i e V_o e la corrente I_o con ingresso a vuoto.


4. Si cortocircuita l'ingresso e si misurano la tensione V_o e le correnti I_i e I_o con ingresso in cortocircuito.


- 5. Con i valori misurati, si calcolano i parametri R, G, h, di trasmissione applicando le loro definizioni e tenendo conto dell'eventuale segno meno delle correnti (I_o con uscita in cortocircuito e I_i con ingresso in cortocircuito devono essere prese con segno negativo perché il verso convenzionale è opposto a quello della tensione; per il quadripolo a parametri di trasmissione le correnti e le tensioni sono positive in quanto il verso convenzionale della corrente I_o è concorde con quelle della tensione).
- 6. Si tabulano i dati.

Procedimento di misura quadripolo a Π


7. Si collega ai terminali d'ingresso il generatore E_S regolato a 5V e si misurano le tensioni V_i e V_o e la corrente I_i con uscita a vuoto.


8. Si cortocircuita l'uscita e si misurano la tensione V_i e le correnti I_i e I_o con uscita in cortocircuito.

9. Si collega il generatore E_S regolato a 5V ai terminali d'uscita e si misurano le tensioni V_i e V_o e la corrente I_o con ingresso a vuoto.

10. Si cortocircuita l'ingresso e si misurano la tensione V₀ e le correnti I_i e I₀ con ingresso in cortocircuito.

11. Con i valori misurati, si calcolano i parametri R, G, h, di trasmissione applicando le loro definizioni e tenendo conto dell'eventuale segno meno delle correnti (I_o con uscita in cortocircuito e I_i con ingresso in cortocircuito devono essere prese con segno negativo perché il verso convenzionale è opposto a quello della tensione; per il quadripolo a parametri di

trasmissione le correnti e le tensioni sono positive in quanto il verso convenzionale della corrente I_o è concorde con quelle della tensione).

12. Si tabulano i dati.

TABULAZIONE DEI PARAMETRI R, G, h, DI TRASMISSIONE

Quadripolo a T

	Ing	resso a vu	ioto	Ingress	Ingresso in cortocircuito			Ingresso in cortocircuito			Ingresso in cortocircuito		
	$I_i = 0 V_i = 0$			$I_0 = 0$			$V_o = 0$						
	V	olt	mA	mA	Volt	mA	Volt	mA	Volt	Volt	m	Α	
	Vi	Vo	I _o	I_i	V_{o}	I _o	V_{i}	I_i	V _o	V_{i}	I_{i}	I_{o}	
Mis	3,167	5	0,683	-0,722	5	1,140	5	0,683	3,165	5	1,140	-0,722	
Calc	3,176	5	0,676	-0,719	5	1,132	5	0,676	3,176	5	1,132	-0,719	

		Parametri R (Z)						
		$\mathrm{k}\Omega$						
	$R_{11} = \frac{V_i}{I_i} \bigg _{I_0 = 0}$	$R_{11} = \frac{V_{i}}{I_{i}}\Big _{I_{0}=0} \qquad R_{12} = \frac{V_{i}}{I_{0}}\Big _{I_{i}=0} \qquad R_{21} = \frac{V_{o}}{I_{i}}\Big _{I_{0}=0} \qquad R_{22} = \frac{V_{o}}{I_{0}}\Big _{I_{1}=0}$						
Valori misurati	7,32	4,637	4,634	7,32				
Valori calcolati	7,40	4,7	4,7	7,40				

		Parametri G (Y)							
		$m\Omega^{-1}$ (mS)							
	$G_{11} = \frac{I_i}{V_i} \bigg _{V_0 = 0}$	$G_{11} = \frac{I_i}{V} \qquad G_{12} = \frac{I_o}{V} \qquad G_{21} = \frac{I_o}{V} \qquad G_{22} = \frac{I_o}{V}$							
Valori misurati	0,228	-0,144	-0,144	0,228					
Valori calcolati	0,226								

	Parametri h							
	kΩ	$m\Omega^{-1}$ (mS)						
	$h_{11} = \frac{V_i}{I_i} \bigg _{V_0 = 0}$	$h_{12} = \frac{V_i}{V_o} \bigg _{I_i = 0}$	V					
Valori misurati	4,385	0,633	-0,633	0,136				
Valori calcolati	4,415	0,635	-0,635	0,135				

		Parametri h							
	Adimensionale	kΩ	$m\Omega^{-1}$ (mS)	Adimensionale					
	$A = \frac{V_o}{V_i} \bigg _{I_o = 0}$	$B = \frac{V_i}{I_o} \bigg _{V_o = 0}$	$C = \frac{I_i}{V_o} \bigg _{I_o = 0}$	$D = \frac{I_i}{I_o} \bigg _{V_o = 0}$					
Valori misurati	1,579	6,925	0,216	1,579					
Valori calcolati	1,574	6,950	0,213	1,574					

Quadripolo a Π

	Ing	resso a vi	ioto	Ingress	Ingresso in cortocircuito			Ingresso in cortocircuito			Ingresso in cortocircuito		
		$I_i = 0 V_i = 0$			$I_0 = 0$			$V_o = 0$					
	V	olt	mA	mA	Volt	mA	Volt	mA	Volt	Volt	m	ıΑ	
	Vi	V _o	I _o	I_i	V_{o}	I _o	V_{i}	I_{i}	V_{o}	V_{i}	I_{i}	I _o	
Mis	3,172	5	1,757	-1,859	5	2,930	5	1,753	3,166	5	2,924	-1,859	
Calc	3,176	5	1,739	-1,852	5	2,916	5	1,739	3,176	5	2,916	-1,852	

		Parametri R (Z)						
		$\mathrm{k}\Omega$						
	$R_{11} = \frac{V_i}{I_i}\Big _{I_o = 0}$ $R_{12} = \frac{V_i}{I_o}\Big _{I_i = 0}$ $R_{21} = \frac{V_o}{I_i}\Big _{I_o = 0}$ $R_{22} = \frac{V_o}{I_o}$							
Valori misurati	2,852	1,805	1,806	2,846				
Valori calcolati	2,870							

		Parametri G (Y)							
		$\mathrm{m}\Omega^{-1}(\mathrm{mS})$							
	$G_{11} = \frac{I_{i}}{V_{i}} \bigg _{V_{o}=0} \qquad G_{12} = \frac{I_{i}}{V_{o}} \bigg _{V_{i}=0} \qquad G_{21} = \frac{I_{o}}{V_{i}} \bigg _{V_{o}=0} \qquad G_{22} = \frac{I_{o}}{V_{o}}$								
Valori misurati	0,585	-0,372	-0,372	0,586					
Valori calcolati	0,583								

		Paran	netri h			
	kΩ	$m\Omega^{-1}$ (mS)				
	$h_{11} = \frac{V_i}{I_i} \bigg _{V_0 = 0}$	$h_{12} = \frac{V_i}{V_o} \bigg _{I_i = 0}$	V			
Valori misurati	1,710	0,634	-0,636	0,351		
Valori calcolati	1,715	0,635	-0,635	0,348		

		Parametri h							
	Adimensionale	kΩ	$m\Omega^{-1}$ (mS)	Adimensionale					
	$A = \frac{V_o}{V_i} \bigg _{I_o = 0}$	$B = \frac{V_i}{I_o} \bigg _{V_o = 0}$	$C = \frac{I_i}{V_o} \bigg _{I_o = 0}$	$D = \frac{I_i}{I_o} \bigg _{V_o = 0}$					
Valori misurati	1,579	2,689	0,554	1,573					
Valori calcolati	1,574	2,700	0,548	1,574					

TABULAZIONE DEI PARAMETRI $R_i, R_o, \alpha, A_o, A_v, \beta, A_{vt}$.

Dai valori ottenuti per i parametri R, G, h, di trasmissione si calcolano R_i , R_o , α , A_o , A_v , β , A_{vt} e si tabulano i valori.

Quadripolo a T

	Valori ottenuti sperimentalmente										
Quadripolo	Volt		k	Ω			Adimensionali				
a parametri	Es	R_{S}	$R_{\rm L}$	Ri	R _o	Ao	α	β	$A_{\rm v}$	A_{vt}	
R	5	1	8,2	5,935	4,737	0,633	0,856	0,634	0,412	0,353	
	5	0,47	3,9	5,404	4,562	0,633	0,927	0,451	0,276	0,276	
G	5	1	8,2	5,926	4,737	0,633	0,856	0,634	0,411	0,352	
	5	0,47	3,9	5,400	4,526	0,633	0,920	0,463	0,297	0,273	
h	5	1	8,2	5,938	4,753	0,633	0,856	0,633	0,413	0,353	
	5	0,47	3,9	5,406	4,576	0,633	0,920	0,460	0,298	0,274	
di trasmissione	5	1	8,2	5,931	4,738	0,633	0,856	0,634	0,413	0,553	
	5	0,47	3,9	5,403	4,562	0,633	0,920	0,461	0,290	0,274	

Valori ottenuti sperimentalmente											
Quadripolo	Volt	kΩ				Adimensionali					
a parametri	E_{S}	R_{S}	$R_{\rm L}$	Ri	R _o	A_{o}	α	β	$A_{\rm v}$	A_{vt}	
R	5	1	8,2	5,984	4,770	0,635	0,857	0,632	0,413	0,354	
	5	0,47	3,9	5,445	4,593	0,635	0,920	0,459	0,298	0,274	
G	5	1	8,2	6,009	4,782	0,635	0,857	0,632	0,414	0,355	
	5	0,47	3,9	5,464	4,604	0,635	0,920	0,459	0,298	0,275	
h	5	1	8,2	5,984	4,774	0,635	0,857	0,632	0,413	0,354	
	5	0,47	3,9	5,445	4,596	0,635	0,920	0,459	0,298	0,274	
di trasmissione	5	1	8,2	5,980	4,770	0,635	0,857	0,632	0,413	0,354	
	5	0,47	3,9	5,443	4,593	0,635	0,927	0,459	0,298	0,276	

Quadripolo a Π

Valori ottenuti sperimentalmente											
Quadripolo	Volt	kΩ				Adimensionali					
a parametri	E_{S}	R_{S}	R_{L}	R_{i}	R _o	A _o	α	β	$A_{\rm v}$	A_{vt}	
R	5	1	8,2	2,557	2,000	0,633	0,719	0,804	0,524	0,377	
	5	0,47	3,9	2,369	1,864	0,633	0,834	0,677	0,441	0,368	
G	5	1	8,2	2,567	2,005	0,633	0,720	0,803	0,525	0,378	
	5	0,47	3,9	2,377	1,869	0,633	0,835	0,676	0,441	0,368	
h	5	1	8,2	2,562	2,001	0,633	0,720	0,804	0,525	0,377	
	5	0,47	3,9	2,374	1,866	0,633	0,835	0,676	0,441	0,368	
di trasmissione	5	1	8,2	2,557	1,998	0,633	0,719	0,804	0,525	0,377	
	5	0,47	3,9	2,369	1,864	0,633	0,834	0,677	0,441	0,368	

Valori ottenuti sperimentalmente											
Quadripolo	Volt	kΩ				Adimensionali					
a parametri	E_{S}	R_{S}	R_{L}	R_i	R _o	Ao	α	β	$A_{\rm v}$	A_{vt}	
R	5	1	8,2	2,568	2,010	0,635	0,720	0,803	0,526	0,379	
	5	0,47	3,9	2,378	1,873	0,635	0,835	0,675	0,442	0,368	
G	5	1	8,2	2,572	2,010	0,635	0,720	0,803	0,525	0,378	
	5	0,47	3,9	2,381	1,878	0,635	0,835	0,675	0,441	0,368	
h	5	1	8,2	2,555	2,010	0,635	0,720	0,803	0,525	0,379	
	5	0,47	3,9	2,371	1,878	0,635	0,835	0,675	0,441	0,373	
di trasmissione	5	1	8,2	2,572	2,010	0,635	0,720	0,803	0,525	0,379	
	5	0,47	3,9	2,381	1,878	0,635	0,835	0,675	0,441	0,373	

Valutazione dei dati

Dalle tabelle, e dal loro confronto, si evidenzia che qualunque sia il quadripolo equivalente utilizzato i valori dei parametri R_i , R_o , α , A_o , A_v , β , A_{vt} praticamente coincidono.